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FIGURE 1. Overview of The Contributions of This Work. We systematically evaluate cross-dataset 
generalizability of 18 algorithms: 9 prior behavior modeling algorithms for depression detection,  
8 recent domain generalization algorithms, and the new algorithm, Reorder, proposed in this paper.  
Our open-source platform GLOBEM consolidates these algorithms and provides support to 
researchers using, developing, or evaluating various algorithms.
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BEhavior Modeling

Ubiquitous computing, the seamless integration of sensing, analytics, and feedback into daily life 
envisioned by Weiser [12], has come closer to reality with the broad adoption of smartphones and 
wearable devices. These devices, integral to users’ daily routines, passively collect massive amounts  
of data on human behavior, offering unprecedented insights into personal health and well-being [7]. 

For example, passive sensing can continuously monitor subtle changes in behavior indicative of depression  
or other shifts in mental health status [10,14,15].

However, the challenge lies in the general-
ization of behavior models across diverse 
datasets, which often reflect different 
populations or conditions. Most models 
are typically trained and validated on 
data from a single source, limiting their 
applicability to broader populations or 
real-world deployment.

Our study addresses this challenge by  
examining the generalizability of longi- 
tudinal behavior models across multiple 
datasets, using depression detection as 
an example application. In this work, 
we evaluate the robustness of models 
from prior work and introduce a novel 
algorithm, Reorder, that leverages the 
behavioral science insights of temporal 
continuity and enhances model 
generalizability [13].

We further contribute to the field by 
presenting GLOBEM [13], an open-source 
benchmark platform that consolidates 
a number of algorithms to foster open-
source research and development in this 
area. This platform allows for rigorous 
evaluation across multiple datasets and 
health prediction targets. It also supports 

flexible extension of new algorithms, new 
datasets, and new prediction targets.

This work underscores the importance 
of cross-dataset validation. We provide 
a comprehensive framework for other 
researchers to evaluate and enhance their 
behavioral models. Through this collective 
effort, we aim to ensure models are robust 
and applicable across different demographic 
and temporal contexts and across various 
health concerns. Figure 1 highlights our 
contributions.

MULTI-YEAR MULTI-INSTITUTION 
DATA COLLECTION
Our research builds upon large-scale 
longitudinal passive sensing data collected 
from smartphones and wearable devices. 
This data captures daily behavioral signals  
that are used for prediction model develop- 
ment, such as physical activity levels, social 
interactions, and mental health states.

Data Collection
Our collaborative study involved two research 
groups from two Carnegie-classified R-1 
universities in the States. At each university, 

we conducted two longitudinal passive 
sensing data collection studies in two 
consecutive years, generating four datasets 
[7]. The collection studies followed a similar 
design to ensure sensor consistency across 
cohorts, and each group followed a uniform 
data transformation and feature extraction 
process, creating four institute-year datasets.

Participants in these studies were under- 
graduate students and were compensated 
based on their compliance with the study pro-
tocol. Our studies were approved by university 
institutional review boards (IRBs). The data 
collection included various modalities such as 
location, phone usage, physical activity, and 
sleep. In both institutions, we employed well-
established and validated questionnaires to  
assess depression and other mental distress  
on a weekly basis and at the end of the quarter. 
The weekly surveys included PANAS (Insti-
tute1Year1 only), PHQ-4 (remaining datas-
ets). The end-term surveys included BDI-II 
(Institute1) and PHQ-4 (Institute2). 

As an initial step of model generaliz- 
ability evaluation, we focused on a binary 
classification task: the presence of at least 
mild depressive symptoms as self-reported 
(i.e., PHQ-4 > 2, BDI-II > 13). Note that 
the PANAS contains questions related to 
depressive symptoms (e.g., “distressed”)  
but does not assess depression in the style  
of measures such as the PHQ-4 or BDI-II. 
We had PHQ-4 and BDI-II scores for all 
datasets except Institute1Year1. To make  
the datasets compatible, we generate  
reliable ground truth binary labels from 
PANAS by developing a simple decision tree 
model using the Institute1Year2 dataset,  
which has both PANAS and PHQ-4 scores. 
The model achieves an accuracy of 74.5%. 
We then applied this model to Institute1Year1 
dataset to generate labels. A comprehensive 
breakdown of study information and partici- 
pant demographics can be found in Figure 2.

Excerpted from “GLOBEM: Cross-Dataset Generalization of Longitudinal Human Behavior Modeling,” from IMWUT 2023: Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous Technologies, with permission. https://dl.acm.org/doi/10.1145/3569485 ©ACM 2023 
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temporal reordering task, which compels the 
model to recognize and predict the correct 
sequence of observed behaviors. It shuffles 
the temporal order of the feature matrix, and 
trains a model to reconstruct the original 
sequence, jointly optimized with the main 
classification task.

Reorder achieves two tasks simultan- 
eously: 1) it will learn to solve the main task 
(i.e., depression detection in our case);  
and 2) it will learn to capture the continuity 
of behavior trajectories, so that it can 
find the original temporal order of the 
time-series feature data before shuffling. 
Due to the prevalence of the continuous 
behavior trajectories based on human 
nature (analogous to the continuous edges 
and patterns in images [2]), solving the 
second task by learning such continuity 
could assist the model in extracting more 
generalizable representations of behavior 
trajectories across individuals. By focusing 
on the temporal dynamics of behavior, 
Reorder helps the model capture general 
characteristics that are invariant across 
different datasets and populations, thus 
enhancing the model’s generalizability. 
Figure 3 illustrates its main concept 
compared to a vanilla deep learning model.

Implementation Details
We created a multi-task learning model 
function h, with the 1D-CNN-based 
embedding (parameters θf), fully connected 

different datasets, ensuring a consistent 
format for analysis. This process included 
normalization procedures to standardize 
feature scales across different datasets. After 
processing, the data is formatted as a time-
series feature-vector matrix, paired with 
labels at certain timestamps. To standardize 
input shapes, we sliced the feature sequence 
into consistent backward four-week periods 
based on each label. We picked four weeks  
to cover previous depression detection 
models’ feature calculations. Each label 
matches a feature matrix of identical shapes.

NOVEL GENERALIZABLE 
ALGORITHM: REORDER
The challenge in domain generalization is 
largely due to the data distribution shift in 
heterogeneous domains. In our case, such a 
shift comes not only from dataset differences 
(i.e., each subpopulation behavior pattern 
varies), but also from individual differences 
(i.e., each person behaves uniquely). Despite 
these differences, we observed similarities in 
behaviors across individuals. For example, 
although individuals have unique daily 
routines, these patterns lead to continuous 
behavior trajectories along the time domain. 
Such an observation motivates us to 
leverage behavior continuity and construct 
a self-supervised learning task to obtain 
generalizable feature representations.

The key idea behind Reorder is to aug- 
ment the training process by incorporating a 

Feature Extraction
The feature extraction process was standard- 
ized across all datasets to ensure compara- 
bility and reproducibility. We employed 
the RAPIDS platform [8], which supports 
a broad range of sensor data types and 
facilitates the integration of data streams 
from multiple devices. Our feature extraction 
focused on multiple behavioral dimensions, 
including:

• 	 Location: Measured through the GPS 
data, providing insights into user mobility 
patterns, location variance, the radius of 
gyration, etc.

• 	 Phone Usage: Monitored via app usage 
statistics and screen on/off events, 
helping infer social connectivity and 
daily routines.

• 	 Physical Activity and Sleep Patterns: 
Collected through Fitbit devices, offering 
detailed metrics on physical movements, 
exercise routines, and sleep quality.

We incorporated multiple time windows 
when extracting the features, including four 
epochs of a day (morning 6 am - 12 pm, after- 
noon 12 pm - 6 pm, evening 6 pm - 12 am, and 
night 12 am - 6 am), the whole day, and the 
past two weeks.

Data Preparation
Each dataset underwent a cleaning and 
preparation phase to align them across 

FIGURE 2. Basic Study Information and Participant Demographics of Four Datasets. In the ground truth row, the percentage in  
parentheses indicates the proportion of participants having at least mild depressive symptoms based on the corresponding questionnaires. 
Gender acronym - F: Female, M: Male, NB: Non-binary. Racial acronym - A: Asian, B: Black or African American, H: Hispanic, N: American 
Indian/Alaska Native, PI: Pacific Islander, W: White, NA: Did not report. & is used when participants reported more than one race.

[HIGHLIGHTS]

	 Institute 1	 Institute 2

	 Year1 - DS1	 Year2 - DS2	 Year1 - DS3	 Year2 - DS4

	 Participants	 - Total: 155	 - Total: 218	 - Total: 93	 - Total: 152 
		  - Gender: F 107, M 48	 - Gender: F 111, M 107	 - Gender: F 65, M 27, NB 1	 - Gender: F 101, M 49, NB 2 
		  - Race: A 82, B 5, H 9, N 4,	 - Race: A 102, B 6, H 10, N 2,	 - Race: A 20, B 3, H 2, N 4, PI 1,	 - Race: A 28, B 2, H 4, 
		  PI 3, W 50, A&PI 2	 PI 1, W 70, A&B 1, A&W 16,	 W 52, B&H 1, H&W 5, NA 5	 N4, W 100, B&H 1, NA 13 
			   H&W 2, B&W 2, A&H&W 1,		  - 58 also in Year1	  
			   B&H&W 1, H&N&W 1, NA 3 
			   - 23 also in Year1

	 Gound Truth	 - Weekly: Depression & 	 - Weekly: PHQ-4 (50.3%)	 - Weekly: PHQ-4 (35.9%)	 - Weekly: PHQ-4 (37.7%) 
		  Affect (44.4%)	  
		  - End-term: BDI-II (35.4%)	 - End-term: BD-II (42.9%)	 - End-term: PHQ-4 (42.4%)	 - End-term: PHQ-4 (33.8%)

	 Sensor Data	 - Overlap: Location, Phone Usage	 - Overlap: Location, Phone Usage 
		  - Compatible: Physical Activity (Fitbit), Sleep (Fitbit)	 - Compatible: Physical Activity (phone), Sleep (phone) 
		  - Incompatible: Bluetooth, WiFi, Call, Battery	 - Incompatible: Audio
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to develop new algorithms within the 
pipeline. Moreover, GLOBEM separates the 
configuration setup from the model definition, 
supporting easy testing and ablation studies of 
hyperparameters and different features. 

EVALUATION
Dataset Analysis
In-depth analysis of four diverse datasets 
highlighted the complexities in behavioral 
features associated with depression. We 
first utilized linear mixed-effect models 
to quantify the strength and direction of 
relationships between individual features 
and depression. Key behavioral indicators 
such as sleep duration, phone usage, and  
physical activity showed statistically 
significant correlations with depression scores 
(see Figure 4.a). For instance, shorter sleep 
duration and higher frequency of phone 
usage were consistently associated with 
higher depression scores across all datasets. 

The consistency of some features across 
datasets suggested universal behavioral 
markers of depression, while variations 
in other feature impacts underscored the 
influence of contextual factors specific to 
each dataset (see Figure 4.b). For example, 
the patterns of mobility (e.g., number of 
frequent locations visited) and physical 
activity (e.g., number of steps) varied across 
datasets, indicating potential cultural or 
environmental differences. Note that these 
datasets were all collected before COVID-19.

diverse datasets. GLOBEM integrates our 
new Reorder algorithm along with other 
established and novel methodologies to 
create a comprehensive environment for 
development and evaluation. It is available  
at https://the-globem.github.io/.

GLOBEM is designed to support a wide  
array of algorithms, facilitating direct com- 
parisons under standardized conditions. 
Other than Reorder, this platform includes 
nine traditional behavior modeling algorithms:  
Canzian et al. [1], Saeb et al. [6], Farhan et al.  
[4], Wahle et al. [9], Lu et al. [5], Wang et al.  
[11], Xu et al. - Interpretable [15], Xu et al. -  
Personalized [14], and Chikersal et al. [3]. 
It also incorporates 8 recent algorithms in 
domain generalization techniques. Other 
than the basic ERM (Empirical Risk Mini- 
mization), GLOBEM includes Mixup, IRM 
(Invariant Risk Minimization), DANN 
(Domain-Adversarial Neural Network), 
CSD (Common Specific Decomposition), 
MLDG (Meta-Learning for Domain 
Generalization), MASF (Model-Agnostic 
Learning of Semantic Features, and Siamese 
Network. More details of these algorithms 
can be found in [13].

An essential feature of GLOBEM is its 
open-source nature, which encourages 
collaboration and innovation in the com- 
munity. Researchers and developers can 
access the full suite of datasets, algorithms, 
and other modules on GLOBEM. They can 
reuse or re-purpose any of these modules 

layers for reordering (parameters θr), and 
fully connected layers for classification 
(parameters θc). The first task is the main 
classification task. The loss function of 
this task is Lc(h(x |θf ,θc), y), where x is the 
input matrix, and y is the classification 
label. The second task is the reordering 
task. Specifically, we first sliced the feature 
matrix along the temporal dimension into n 
segments and then shuffled these segments. 
We picked the number of segments n = 
10 ( 28/3 ) since 28! or 14! (28/2) is too 
computationally expensive. Moreover, as 10! 
total possible permutations is still an overly 
large number, we predetermined a subset 
of P = 200 permutations by following the 
Hamming-distance-based method. We then 
assigned an index to each permutation. 
Within the subset, the reordering task is 
equivalent to identifying the index of the 
permutation, which is essentially another 
classification task. Therefore, the loss function  
of the reordering task is Lr(h(z |θf ,θr), p), 
where z is the feature matrix x after the 
reordering, and p is the permutation index. 
Overall, the model can be trained via the 
following objective function: 

argmin
θf ,θc ,θr

(∑∑
NiS

j=1 i=1 

Lc(h(xi
j|θf,θc), yi

j)

Loss Func of The Main Task

+

∑
βNi

j=1 

αLr(h(zi
j|θf,θr), pi

j)

Loss Func of The Reordering Task

where both Lc and Lr are cross-entropy 
losses. S is the total number of training 
domains, and Ni is the size of a domain i.  
α is used to control the weight of the 
reordering task while β is used to control 
the size of reordering data. xji, yji, zji, Pji, 
are specific instances in each domain i with 
index j. Moreover, we also incorporate the 
Mixup augmentation technique to increase 
the variation of the data. It is worth noting 
that the reorder puzzle is only enabled during 
the training stage. There is no shuffling at the 
testing stage to avoid extra noise.

OPEN-SOURCE BENCHMARK 
PLATFORM: GLOBEM
The GLOBEM platform (Generalization of 
LOngitudinal BEhavior Modeling) offers a 
robust benchmarking tool for evaluating the 
generalizability of behavior models across 
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FIGURE 3. The Design of Reorder Compared to ERM. In addition to the main behavior modeling 
task, Reorder further introduces a secondary task of solving a reorder puzzle to force the model to 
learn the continuity of behavior trajectory.
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Single-Dataset Evaluation  
of Existing Algorithms
The performance analysis of existing 
depression detection models revealed 
significant discrepancies when applied to 
new datasets compared to their reported 
performance in their original studies. Models 
that achieved high accuracy in detecting 
depression in one dataset often failed to 
replicate this performance in another, 
indicating a lack of generalizability (Average 
Δ = 15.9 ± 10.7% for end-of-term depression 
prediction, and Δ = 22.6 ± 8.5% for weekly 
depression prediction), emphasizing the 
challenge of creating robust depression 
detection models that perform consistently 
across different populations and settings.

Cross-Dataset Evaluation
In cross-dataset evaluation, models were 
trained on three datasets and tested on the 
fourth. This setup simulated the challenge 
of deploying models in new environments 
where they had not been initially calibrated. 
Following are our primary observations.

First, all nine depression detection 
models demonstrated worse performance 

than those in the single-dataset evaluation. 
The best model, Chikersal et al., showed an 
average balanced accuracy of 52.0% and 
an ROC AUC of 54.1% in the cross-dataset 
evaluation, compared to 58.8% in the 
within-dataset evaluation.

Second, although modern ML techniques  
have been developed to deal with the challenge  
of feature shift across domains, these models 
did not work well on our datasets. Among 
the 15 models we investigated, CSD - Person 
as Domain and ERM - 2D-CNN achieved 
the highest ROC AUC (52.3%), similar to 
the results of traditional depression detection 
models (54.1% for Chikersal et al.). These 
evaluations illustrated that recent domain 

generalization methods do not work well 
on our datasets. Most of these methods 
were developed under the context of CV or 
NLP tasks, and their generalizability may 
be affected when applied to longitudinal 
behavior data. 

Most importantly, of the 26 models 
evaluated, our newly proposed Reorder 
model achieved the highest ROC AUC of 
57.5% and the highest balanced accuracy 
of 55.2%. As shown in Figure 5, Reorder 
stands out. It outperforms the other models 
by at least 3.4% on ROC AUC (6.3% relative 
advantage), and 3.2% on absolute balanced 
accuracy (6.2% relative advantage), both 
with statistical significance (p < 0.05). Since 

FIGURE 4. Features Analysis across All Datasets. (a) Each data type’s top features with consistent coefficients of linear mixed effect models between the 
feature value and depression labels across all datasets. Red indicates negative coefficients and blue indicates positive coefficients. Error bar indicates 
standard error. (b) Example features’ distribution across all datasets, which reveals how datasets can differ from each other. Datasets of the same institute 
are coded with closer colors. DS1 (green) and DS2 (blue) belong to the same institute, and DS3 (orange) and DS4 (red) belong to the other institute.

[HIGHLIGHTS]

WE PRESENT GLOBEM [13], AN OPEN-SOURCE 
BENCHMARK PLATFORM THAT CONSOLIDATES
A NUMBER OF ALGORITHMS TO FOSTER OPEN- 
SOURCE RESEARCH AND DEVELOPMENT IN THIS  
AREA. THIS PLATFORM ALLOWS FOR RIGOROUS 
EVALUATION ACROSS MULTIPLE DATASETS AND 
HEALTH PREDICTION TARGETS 

(a) Linear mixed model coefficiants of example features (b) Distribution comparison of example features 
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Reorder has the same 1D-CNN backbone 
as ERM-1D-CNN, the comparison between 
these two models reveals the effect of adding 
the second reorder puzzle-solving task, 
which boosts the performance by 5.9% on 
ROC AUC (11.4% relative advantage) and 
3.9% on balanced accuracy (7.6% relative 
advantage). Such an improvement illustrates 
that learning the temporal continuity of 
behavior trajectory can enhance the model’s 
generalizability.

Multiple Aspects of Generalization
In addition to the leave-one-dataset-out 
evaluation, we conducted additional 
experiments to obtain more insights into 
the models’ generalizability and investigate 
different generalization challenges. As 
the four datasets were collected from two 
institutes across two years, we can evaluate 
how these models generalize across institutes 
(i.e., different populations), and across 
years (i.e., different users within the same 
population). Moreover, in each institute, 
there was a small number of people who 
participated in both years. Thus, we also 
evaluated the models on these subsets of 
users across years to test generalization across 
the same participants at different times.

Figure 6 summarizes the key results.  
The cross-institute and cross-year evaluation 
results provide more insights into model 
generalizability. The model Reorder had 
the best or the second-best results across 
the different tasks, revealing its advantages 
over other models. Moreover, the results of 
the third cross-dataset setup were clearly 
better than those of the other two setups, 
revealing that individual differences (no 
matter whether that is within or between 
populations) may play the most important 
role in the cross-dataset generalization 
challenge.

Even though Reorder shows promise 
in domain generalization, it is worth 
noting that our model still has room for 
improvement. The current performance is 
still far from being deployable in real-life 
scenarios, and we need more future research 
to improve model generalizability.

CONCLUSION
In this work, we highlight the importance 
of a behavior model’s cross-dataset 
generalizability. Using depression detection 
as an example, we take the first step towards 
a systematic cross-dataset generalization 
evaluation in the longitudinal behavior 

modeling domain. We combined the 
efforts of two research groups across two 
institutions, each with two years of data, 
and established four datasets with a set of 
consistent features. We re-implemented 
nine prior depression detection methods, 
built eight recent domain generalization 
algorithms, and proposed a new method, 
Reorder, for better generalizability. Our 
evaluation of these models on our datasets 
demonstrated that existing algorithms 
barely outperform the baseline on cross-
dataset generalization tasks, and that 
our new method Reorder could learn 
the continuity of behavior trajectories 
and achieve better generalizability across 
datasets. Although statistically significant, 
its performance advantage is marginal 
in practical terms, with much room for 
improvement. Moreover, the comparison 
of multiple generalization tasks indicates 
that individual differences in behavior 
pose the main challenges for domain 
generalization in the longitudinal behavior 
modeling area. To assist future researchers 
in testing existing methods and developing 
new algorithms, we integrated all methods 
and open-sourced a benchmark platform 
named GLOBEM. 

FIGURE 5. Model Performance of Predicting Bi-Weekly Depression Status across Datasets.  
The dashed line indicates a naive majority baseline. The same in Figure 6.

ROC AUC Balanced Accuracy
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Call to Action
We encourage the research community to 
continue exploring these methodologies and 
to further develop the GLOBEM platform. 
By leveraging the collective expertise and
resources of the community, we hope to 
accelerate the advancement of generalizable 
behavior models that are capable of 
supporting a wide range of applications, 
from mental health monitoring to 
personalized medicine.

This research sets the stage for a deeper 
investigation into the mechanisms that 
underpin effective behavior modeling 
across diverse datasets, toward the vision of 
ubiquitous sensing and analytics that support 
health and well-being on a global scale. n
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FIGURE 6. Model Performance of Predicting Bi-Weekly Depression Status across Institutions (left) and Years (middle, right).  
Models are tested on the datasets of one year/institution after being trained on the other year/institution.
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