RobotIST: Interactive Situated Tangible Robot Programming

Yasaman S. Sefidgar*
University of Washington
einsian@cs.washington.edu

Sarah Elliott
University of Washington
sksellio@cs.washington.edu

Thomas Weng®
University of Washington
tweng@cs.washington.edu

Heather Harvey
University of Washington
harvh@cs.washington.edu

Maya Cakmak
University of Washington
cakmak@cs.washington.edu

id program detected

Figure 1: Overview of the RobotIST system for interactive situated programming of robot manipulation tasks using tangible
blocks. Programmer places the blocks in the robot’s workspace in reference to the locations and objects of interest. Robot
projects its understanding of the environment and the program onto the workspace in real-time. (a) RobotIST highlights the
workspace as well as the objects detected in the environment through workspace and environment perception projections. (b) it
additionally highlights tangible blocks. (c) in the programming mode, workspace projection turns blue and the robot highlights
different instructions, each in a different color. It additionally represents their semantics. For example, objects of interest are
highlighted in the same color as the instruction referencing them. Similarly, the cross-hair indicates the location the system
considers under the instruction. The program depicted above allows the robot to stack all green cylinders at the location of
the cross-hair. The system confirms that it has identified this program by a message in the status bar (Valid program detected).

ABSTRACT

Situated tangible robot programming allows programmers to ref-
erence parts of the workspace relevant to the task by indicating
objects, locations, and regions of interest using tangible blocks.
While it takes advantage of situatedness compared to traditional
text-based and visual programming tools, it does not allow pro-
grammers to inspect what the robot detects in the workspace, nor
to understand any programming or execution errors that may arise.
In this work we propose to use a projector mounted on the robot to
provide such functionality. This allows us to provide an interactive

“Y.S. Sefidgar and T. Weng contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SUI 18, October 13—14, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5708-1/18/10...$15.00
https://doi.org/10.1145/3267782.3267921

situated tangible programming experience, taking advantage of sit-
uatedness, both in user input and system output, to reference parts
of the robot workspace. We describe an implementation and evalu-
ation of this approach, highlighting its differences from traditional
robot programming.

CCS CONCEPTS

+« Human-centered computing — Interactive systems and tools;

KEYWORDS

Robot Programming; Tangible Programming; Situated Program-
ming; Direct Manipulation; Transparency

ACM Reference Format:

Yasaman S. Sefidgar, Thomas Weng, Heather Harvey, Sarah Elliott, and Maya
Cakmak. 2018. RobotIST: Interactive Situated Tangible Robot Programming.
In Symposium on Spatial User Interaction (SUI ’18), October 13—14, 2018,
Berlin, Germany. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3267782.3267921

https://doi.org/10.1145/3267782.3267921
https://doi.org/10.1145/3267782.3267921
https://doi.org/10.1145/3267782.3267921

SUI ’18, October 13-14, 2018, Berlin, Germany

1 INTRODUCTION

The key advantage of robotic manipulators over traditional au-
tomation is their programmability [32]. The same robot can be
programmed to assemble phones in one factory and paint airplanes
or package food in another. Programming robots to perform new
tasks currently requires advanced knowledge and can take consid-
erable time, even for experts. This dependence on experts and long
development cycles are real barriers for small-to-medium enter-
prises who cannot afford to hire dedicated personnel, as well as for
industries that require customized, small-batch production.

But why is programming robots challenging? While several fac-
tors contribute to the difficulty and uniqueness of robot program-
ming, such as the difficulty of specifying motions with code, the
friction of resetting a physical environment for testing, and high de-
grees of concurrency, one core challenge is referencing task-relevant
parts of the environment (objects or locations) that the robot needs
to interact with. Existing systems require deep understanding of the
robot’s perception system, specialized visualization tools to inspect
the outcome of the robot’s perception, and knowledge of coordinate
frames, transform algebra, and robot kinematics. In contrast, people
can instruct each other about spatial tasks with ease, referencing
task-relevant parts of the environment using referential gestures.
But interpreting such ambiguous input from humans is still an open
problem.

Situated tangible programming [46] was proposed as a way to
unambiguously reference parts of the environment using the so-
called tangible blocks that can be robustly detected by the robot.
The idea is to create robot programs simply by placing blocks in
the robot’s workspace to not only reference objects and locations
in the environment, but also instruct the robot about what to do
with them. This approach takes advantage of the intuitiveness of
situated programming; however, it sacrifices many functionalities
of modern integrated development environments (IDEs), such as
real-time feedback on the correctness or completeness of a program.
While it is possible to augment situated tangible programming with
a screen-based interface, this approach re-introduces the challenges
of establishing correspondence between the environment and the
created program.

Instead, we propose to use situated feedback provided by the
robot in real-time through projections onto its workspace to pro-
vide various IDE functionalities. We present RobotIST (Figure 1),
a system that allows interactive situated tangible programming by
combining situated input from the programmer to the robot, with
situated feedback from the robot to the programmer. In this paper,
we describe the implementation of RobotIST and walk through its
situated IDE functionalities in the context of programming various
robot tasks. We also present findings from an observational study
of eight robot programmers with prior experience with traditional
robot programming tools who used RobotIST to program a sample
task, with aspects common to many industrial settings.

2 RELATED WORK

The seminal survey by Lozano-Perez [32] characterized existing
robot programming systems at the time as using a mix of three ap-
proaches: guide-through programming, robot-level programming,
and task-level programming. Most industrial robots today (Kuka,

Sefidgar et al.

ABB, Schunck, Universal Robots), just like those surveyed three
decades ago, are programmed with a combination of guide-through
and robot-level programming with domain specific languages and
libraries. Most of the systems for programming them involve a GUI
and peripheral devices, such as pendants to aid the complex robot
programming and debugging process. More recent robots, such as
Baxter/Sawyer and Franka, which are targeted for safe human-robot
collaboration, place larger emphasis on making their programming
interface more intuitive and accessible to non-experts. The last
decade also witnessed the open source robotics movement, with
the spread of the Robot Operating System (ROS)[41] across robotics
companies and research labs, which now use common frameworks
and tools for programming robots.

Most research in robotics in the last three decades has focused on
enabling task-level programming and increasing the generalizabil-
ity of the created programs. In particular, research in autonomous
grasping [8, 48], motion planning [16, 30], and reinforcement learn-
ing [28] have all contributed to systems that synthesize robot behav-
ior given a task-level goal. In addition, a large body of research un-
der the umbrella of robot programming by demonstration (PbD) fo-
cused on learning generalizable robot actions from multiple demon-
strations provided with guide-through interfaces [5, 9]. While most
of these have historically been evaluated with expert programmers,
recent work has started to explore their usability for novice users
[1, 2,12, 29, 50]. Besides programming by demonstration, a recently
popularized end-user programming technique in robotics has been
visual programming [3, 6, 14, 15, 19, 24, 45]. However, correspond-
ing the 3D environment to the 2D representation on GUIs remains a
challenge. There are also systems that have looked at programming
robots with natural language [10, 18, 34, 36, 37].

The idea of tangible programming has been explored in the field
of interaction design [47, 52], especially targeting early computer
science education [17, 21, 22, 26, 35, 49]. Comparative studies have
demonstrated several benefits of tangible programming over alter-
natives [23, 44]. Several commercial products for children informed
by this research are already available. Other work has contributed
toolkits or SDKs that lower the barrier for creating tangible inter-
faces [27, 53], that could then allow programming with tangibles.
The issue of interactivity and feedback has been raised in many of
the tangible programming interfaces [17, 21, 22], and alternative
approaches to address them have been introduced. For example,
Beckman & Dey used a dedicated predictive display to demonstrate
the result of tangibly programmed smart-home control rules [7].
Some work involved translucent tiles on interactive tabletops that
can directly display information on the sensed tile [42, 54]. The use
of projected feedback with tangibles was proposed in a few systems
[38].

While tangible programming has been applied to simple toy
robots [22] and wearables [26], the use of tangibles in robotics has
been limited. Luria et al. proposed using tangibles to command a
smart-home robot non-verbally [33]. Sefidgar et al. introduced the
idea of using tangibles for situated communication to reference
objects, locations, and regions in the robot’s workspace as part
of programming [46]. Recent work in robotics explored the use of
projections from the robot for situated communication [4, 11, 13, 31].
Our work aims to bring interactivity to situated and tangible robot
programming through similar use of projected feedback.

RobotIST: Interactive Situated Tangible Robot Programming

3 CHALLENGES IN TRADITIONAL ROBOT
PROGRAMMING

Lozano-Perez distinguished between four requirements of robot pro-
gramming: sensing, world modeling, motion specification, and flow
of control [32]. Sensing allows a robot to obtain identity, position,
and features of objects in its environment; initiate and terminate
motions; choose among alternative actions; and comply to external
constraints. World modeling involves specification of task-relevant
entities in the environment within one coordinate frame, including
sensed objects with variable poses and fixed points or regions on
the robot’s workspace. Poses of objects, locations, and the robot’s
manipulator parts are often expressed with a homogeneous trans-
form, represented with a 4x4 matrix. The transform represents the
relation between coordinate frames with translation of the origin
and rotations of the axes. Motion specification refers to describing
the actual motion of the robot relative to task-relevant entities in
the environment. As discussed in section 2, guide-through program-
ming provides an efficient and intuitive way for specifying desired
robot poses or full motion trajectories. Flow of control is the speci-
fication of high-level robot behavior, such as branching (deciding
among alternative actions) or looping (repeating an action variable
times) based on sensed information.

In the following subsections, we highlight the challenges in robot
programming that traditional tools fail to address in relation to
various elements enumerated above. We use as a working example
a stacking task where all green cylinders are stacked up at a certain
location (Figure 2). A common part of industrial tasks for which
robots are widely used (e.g., machine tending or packaging), this
task illustrates important aspects of many robot programs.

We assume that the robot has a perception system that can detect
and classify objects in its workspace with some accuracy. We also
assume that simple actions for manipulating the objects, such as
picking them up in different ways from detected poses and placing
them at different target poses has already been programmed, e.g., by
guiding the robot through demonstrations. The robot program
created for the stacking task should instruct the robot to sense the
environment and evaluate the presence of green cylinders among
the detected objects. The robot should then adjust its grippers to
pick up the cylinder and move it to the location of interest, specified
as a known constant in the program, and place it there, while
adjusting for the height of the existing stack. Repeating these steps,

Figure 2: A PR2 robot executing the task for stacking all
green cylinders at a certain point.

SUI ’18, October 13-14, 2018, Berlin, Germany

the robot can stack all green cylinders present in the workspace at
the desired location.

3.1 Specifying Objects and Locations of Interest

Although reading raw RGBD data from camera and segmenting it
are usually encapsulated in high level modules and hidden from the
programmer, most systems do not provide an easy way of ‘using’
the visual information extracted from the environment, e.g., they
rely on defining coordinate frames of objects and their transforma-
tions. This requires mathematical expertise and is time-consuming.
Moreover, these systems do not allow an easy way of accurately
defining what object or location is relevant to various steps of the
task. For example, they force the programmer to choose the object
of interest from the list of all segmented objects, using numeric
indices with no intrinsic meaning as reference (e.g., object #5 for the
green cylinder). Building on [46], RobotIST allows programmers
to specify objects of a particular type as well as desired locations,
and instruct the robot to perform actions at those places. RobotIST
complements [46] by providing situated and immediate feedback
of robot’s perception for more informed and effective referencing
of the environment as discussed below.

3.2 Expressing the Task

Any programming tool enforces programmers to represent their
intent in the language of that tool (e.g., through tool-specific in-
structions). Existing robot programming tools provide little support
for facilitating the expression of different tasks in their language.
For most commercial programming systems, programmers usually
need to attend training workshops and consult the programming
manual in order to learn how to express tasks in the language of the
systems. There is no provision within the system to help program-
mers explore and understand the semantics of different instructions
to help them translate the task using those semantics. RobotIST
is based on the same language as [46] and allows the expression
of the same tasks within that language. However, unlike [46], it
communicates the semantics of different instructions both as the
program is being constructed as well as during execution, making
it easier for the programmer to learn and use the language.

3.3 Interpreting Robot’s Behaviour

As with any type of program, errors can occur in a robot program.
Programming tools should help programmers understand what
causes these errors and how to address them.

3.3.1 Handling Perception Errors. Errors are inevitable in any
recognition-based system that extracts information from sensor
data. Robot programming systems are no exception. For example,
there are usually inaccuracies in the size of segmented objects. That
is, the robot’s perception of the green cylinder can be much larger
or smaller than the real one. Using this inaccurate information,
the robot fails at adjusting its arm and grippers to properly grasp
the cylinder. Unfortunately, very few robot programming systems
provide support for the programmer to understand and address
perception errors. Existing support is mostly available in research
prototypes and usually comes in the form of perception information
overlaid on the 3D feed of the environment (e.g., from a robot’s
view or an overhead camera view). Navigating this information,

SUI ’18, October 13-14, 2018, Berlin, Germany

Programming Blocks Information Blocks

Figure 3: The full set of tangible blocks supported in
RobotIST. Programming blocks of [46] are extended by con-
trol and information blocks in RobotIST. Refer to [46] for
the space of tasks that can be expressed using the program-
ming blocks, and for details on the shape and color of the
blocks. See Figure 1 for an example program with these
blocks.

which is presented in 2D on a screen, is challenging and requires
switching between viewpoints to fully understand the 3D environ-
ment. RobotIST communicates the robot’s internal representation
of the environment to the programmer in 3D space, making the
potential perception errors easily available for examination. The
programmer can thus painlessly interpret the robot’s behavior.

3.3.2 Handling Misspecification Errors. A robot’s undesired be-
havior is sometimes associated with errors in task specification.
Existing robot programming tools provide little support to help the
programmer understand what needs to change in their specification
to achieve the desired behavior. Lack of support for understand-
ing the semantics of instructions makes it difficult to know what
changes are necessary to achieve the intended behavior. Undetected
perception errors can lead to unexpected behavior even if the se-
mantics are correct. For example, if the green cylinder is identified
as a green rectangle during programming, the robot will not be-
have as expected. RobotIST’s presentation of the environment as
perceived by the robot, as well as the semantics of a program, help
address misspecification issues from both perceptual and semantic
sources.

4 WALK-THOURGH OF THE ROBOTIST
SYSTEM

RobotIST builds upon the situated tangible programming language
designed by Sefidgar et al. [46] to express a range of pick and place
tasks common in industry. This language involves three types of tan-
gible blocks: selector blocks to indicate objects, locations, or regions
in the environment; action blocks to specify actions parametrized by
objects, locations, or regions; and order blocks to specify the order-
ing of instructions. RobotIST extends this set of programming blocks

Sefidgar et al.

Block Type Name Description

Selection Specifies an object, set of objects,
location, or region

Specifies the action applied to an
object, location, or region
Ordering Defines the ordering of actions

Programming Action

New Switches to programming mode to
create a new program
Save Saves the existing program if valid

Control and switches to idle mode

Execute Switches to execution mode and
executes a program in a loop
Stop Stops the execution and switches to

idle mode

Provides more information about
the error when pointed to it

Information Probe

Table 1: Three types of blocks in RobotIST for programming,
control, and information probing.

with control blocks that allow switching between modes of the sys-
tem and an information block that facilitates live interactions and
feedback at the desired level of detail. The physical implementation
of the blocks are shown in Figure 3 and their functionality is sum-
marized in Table 1. Providing interactivity and situated feedback,
RobotIST helps programmers more easily understand the seman-
tics of the language, create and control programs, and understand
errors they encounter while programming or at run-time. Next,
we illustrate these key RobotIST features in various programming
activities from the creation of a program to executing it. We use the
simple stacking task introduced in Section 3, in which we instruct
the robot to stack objects of a certain type (i.e., green cylinders) at
a specified location.

4.1 Program Creation

RobotIST projects the boundaries of the robot’s operation space on
the workspace to help the programmer understand what part of the
workspace is visible and reachable to the robot. These are referred
to as workspace projections (Figure 1 (a)). In addition, RobotIST high-
lights any objects that the robot has detected in the workspace;
these are called environment perception projections. These allow
programmers to see undetected objects and be aware of any inac-
curacies in the existing detections. They can thus reconfigure the
workspace to make sure all relevant objects are properly detected.

The programmer creates a new program by placing the new-
program block on the workspace. This block is one of the four
control blocks that allow changing the mode of the RobotIST system.
RobotIST acknowledges the detection of any tangible block placed
within the robot’s workspace by projecting a bright white light on it.
These are referred to as block projections (Figure 1 (b)). This conveys
to the programmer any failures in detecting the tangible blocks
and saves her/him the frustration of not knowing why the robot
does not respond as expected. RobotIST modifies the color of the
workspace projection to communicate that it is in the programming
mode.

RobotIST: Interactive Situated Tangible Robot Programming

B2 S8 2 Ss

g At 530
£ N = ¥

(b) (c)
1 \—%% 59 S
2 al e
2 o o m

(1 [

\ —~

Place actions should
follow pick actions

Action block is expected

to form an instruction Could not find object

Figure 4: Errors encountered during program creation. (a)
the action block is covered and is not detected (top image).
By pointing the Probe block we get more information about
the error in the status bar (bottom image). (b) pick and place
instructions are ordered incorrectly (top) and the Probe pro-
vides the additional information (bottom). (c) the instruc-
tion looks for the object of interest and does not find it. The
area where the object is expected is highlighted in red (top)
and probing explains what has gone wrong (bottom).

Next the programmer uses a combination of programming blocks
(selection, action, and ordering) to create instructions that make up
a program. As hinted in the previous section, this involves an object
selection block to indicate green cylinders and a location selection
block to indicate the target pose where the cylinders are to be
stacked. The programmer attaches a "pick up" action block to the
object selector and a "place" action block to the location selector.
Dowel pins and holes on the side of the action and selection blocks
constrain how the blocks fit together, minimizing “syntax errors.”
The ordering blocks communicate to the robot in what order it
should perform these actions. Any pick action in a program is
expected to be followed by a place action.

When various blocks and objects are successfully detected and
grouped into instructions, RobotIST indicates this grouping by
changing the color of block and object projections. Each group
gets a different color excluding white and red. For example, when
an object selector block is grouped with a detected object, that
object and the selector block are highlighted in pink. In addition,
any other object of the same type (e.g., green cylinders) are also
highlighted in pink, albeit a bit dimmer than the one immediately
in front of the arrow. Further, when the pick action is attached to
the selector, the action block projection also becomes pink (Fig-
ure 1 (c)). Similarly, the projections associated with the location
selector and the place action applied to it are highlighted in orange.
We refer to the grouping of instructions in RobotIST as instruction
projections. Through instruction projections, RobotIST improves the
programmer’s understanding of the semantics of tangible blocks
and whether they have successfully expressed their intent using the
blocks, a particularly helpful feature for those new to programming
with the blocks.

When there are errors in forming instruction or matching blocks
with objects, RobotIST highlights where the error occurs in red
(error projections). Error projections help the programmer under-
stand the errors as a prerequisite to debugging. For example, if

SUI ’18, October 13-14, 2018, Berlin, Germany

(a) =a 5 (b)
@ ¥a
Q
A
(C) N ———— n \ .
Block parsing service Scene processing service
unavailable unavailable

Create program by placing programming blocks on the table

%

Figure 5: Internal functionality errors. The workspace
boundaries turn red to inform the programmer of serious
internal failures with messages in the status bar providing
additional information. (a) the system cannot detect tangi-
ble blocks. (b) objects cannot be detected (no highlights) be-
cause the object processing has failed. (c) the system is ex-
pecting programming blocks in the programming mode.

block detection fails at detecting the action block of the pick in-
struction in Figure 1, RobotIST highlights in red both the selection
and ordering blocks that are expected to connect to the action block
(Figure 4 (a)). Similarly, errors in orderings—such as a place instruc-
tion being ordered before any pick instruction, or two consecutive
pick instructions—are indicated by highlighting the problematic
instruction entirely in red (Figure 4 (b)). If object detection fails
and objects relevant to single or multiple object selector blocks are
not found, RobotIST highlights the area searched in red to find the
objects (Figure 4 (c)).

Additional information about what caused a particular error
can be obtained by placing probe block in the workspace, pointing
towards blocks that are highlighted with an error. For example,
when the probe block is pointed to the selection or number blocks
highlighted in red, RobotIST projects additional information inside a
box at the edge of the workspace, explaining that the robot expected
an action block (Figure 4). This is akin to a status bar. In other words,
we first provide an overview of error information (red highlighting)
and then allow the programmer to probe for more details if the fix
is not obvious, visualizing details only on demand.

In the absence of errors, RobotIST informs the programmer on
the status bar that it has identified a valid program. At this point
the programmer can save the program by placing the save block
in the workspace. The program is saved by a default name and
is available even after the system is reset. Placing the save block
additionally causes the system to enter the idle mode, when it no
longer modifies the saved program.

4.2 Program Execution and Debugging

Having created a program, we can execute it by placing the exe-
cution block on the workspace. This will execute the last modified
program. As with any other block, RobotIST acknowledges the
detection of the execution block by highlighting it. Once the block is

SUI ’18, October 13-14, 2018, Berlin, Germany

-

\ O

Figure 6: Projections at the time of execution. Workspace
boundaries are green to indicate the system is in the execu-
tion mode. Program semantics are projected for the stack-
ing task (Section 4): the objects of interest are highlighted
in the same color and the location of interest is highlighted
by a crosshair. The object that the robot is about to pick is
signaled by changing the style of projections.

detected, the system enters the execution mode. This change is visu-
ally indicated by variation in the style of the workspace boundaries
as shown in Figure 6.

Similar to program creation, RobotIST highlights all objects de-
tected on the workspace to help the programmer understand the
robot’s internal representation of the environment (environment
perception projections). It additionally projects information about
the locations and objects relevant to the program (program projec-
tions). For the stacking program described earlier, any instance of
the green cylinder and the location where the cylinders are to be
stacked are all highlighted (Figure 6). As before, instructions are
grouped by color. By presenting the program related information
during execution, RobotIST helps the programmer better reason
about the robot’s behavior in relation to the program instructions.

Projections associated with objects or locations that the robot is
about to act on change in style to inform the programmer where
to expect an action, i.e., pick or place (execution projection). This
makes the robot’s execution process transparent to the programmer
(Figure 6).

If there are errors at run-time, RobotIST highlights where it en-
countered them in red (error projections) (Figure 7 (a)). For example,
if the robot cannot reach a green cylinder it intended to pick, the
cylinder is highlighted in red (Figure 7 (b)). As before, the probe
block can be used to obtain additional information by pointing it to
where the error is highlighted. The entire workspace is highlighted
in red if no green cylinder is found. (Figure 7 (c)).

The programmer can stop the execution at any time by placing
the stop block on the workspace. After acknowledging the detection
of the stop block, RobotIST stops all motion and enters its idle mode.
Execution of the program is resumed from where it was left off if
the execute block reappears.

5 IMPLEMENTATION

RobotIST can be implemented on robot manipulator platforms with
visual perception and basic contact control capabilities. Projections
can be achieved with a robot-mounted or overhead projector. In this
paper we used a PR2 robot for our proof-of-concept implementation
detailed below.

Sefidgar et al.

(& &

o i e it}
A\

(c)

Unable to generate motion to pick up the object.

P
&

Cannot find any objects to pick.

/

Figure 7: Errors at the time of execution. (a) the robot cannot
pick the green cylinder at the bottom right. (b) probing pro-
vides additional information about the issue. (c) the robot
cannot find any object to pick.

5.1 Robot Hardware and Software

PR2 is a 14 degree of freedom (DoF) dual-arm robot (7 DoFs per
arm) on an omni-directional base. The 1-DoF grippers can open to
a maximum of 9cm. We used the right arm only but the implemen-
tation can be extended to both arms. We implemented the system
within the ROS framework, using off-the-shelf libraries such as PCL
for tabletop segmentation, Alvar for AR tag tracking, and Movelt!
for motion planning [40, 43, 51].

5.2 Projections

We mounted a 500-lumen portable projector on the head of the PR2
to project textures onto the scene. We used OpenCV [25] to create
the images displayed through the projector. The projector produces
no light for pure black image pixels, enabling us to project light
selectively on only relevant regions and objects in the scene. We
use the pinhole camera model to represent the projector’s intrinsic
parameters. We assume the position of the robot is fixed and provide
no projector-camera calibration routine, though prior work on
projector-camera calibration exists and can be implemented for a
mobile robot [39].

Projected shapes appear as flat shapes on the surfaces of the ob-
jects, blocks, and the workspace. Since our robot-mounted projector
is at an angle to the target surfaces, a homographic transformation
is required to produce shapes that are geometrically correct in the
real world (See Figure 8). To accomplish this transformation, we
find and apply the graphical projection from the desired real-world
poses of the shapes onto the projector’s output image plane [20].

5.3 Architecture

Figure 9 depicts the overall system architecture. A Microsoft Kinect
mounted on the PR2 provides color images for tracking the AR
tags associated with each programming block, and also provides
depth clouds for identifying objects by table-top segmentation.

RobotIST: Interactive Situated Tangible Robot Programming

Figure 8: Depiction of the homographic transformation H,
from the axis-aligned 2D projection of an initial frame Cy
to the off-axis projection of the robot-mounted projector’s
frame C; for texture P.

GetScene
GetScene

Grasp
A GetGrasps -
- Object |cetscene . -Generation
Kinect Processing Execution | cetretease
T Release
ModeChange Generation

GetProgram

GetExecutionFeedback
AR Ta | ModeChange —
Trackegr Tag Parsing g |Compilation

GetCompilerFeedback
ModeChange - -
GetBlocks Projection

Figure 9: Diagram of the RobotIST software architecture.
The Tag Parsing node detects mode blocks present in the
scene and broadcasts a mode change to control the program
flow. In idle mode, the projection node directly receives and
visualizes scene items detected by the Tag Parsing and Ob-
ject Processing nodes, whereas in programming and execu-
tion modes the items are first processed by the Compilation
and Execution nodes, respectively.

The detected tags are processed by the tag parser, which matches
each tag with its semantic meaning as a tangible block. The tag
parser also maintains the mode of the system (idle, programming,
or execution), updating the mode when it detects a new control
block in the scene. The system mode determines how blocks and
objects are parsed and processed by the compilation, execution,
and projection nodes.

In programming mode, objects and blocks are passed to the com-
pilation node, which attempts to compile a program by grouping
related blocks and objects together to form instructions. It passes
these groups to the projection node, which projects each instruction-
forming set of objects and blocks in a unique color. If the compi-
lation node fails to construct a valid program, it passes the errors
associated with each item in the workspace to the projection node,
which colors them red to denote an error. The probe block can then
be used in this state to select and display each error.

In execution mode, objects and blocks are passed to the execution
node, which runs a saved program over the current objects in the

SUI ’18, October 13-14, 2018, Berlin, Germany

Figure 10: Usefulness ratings averaged across eight partic-
ipants for different RobotIST features. Participants rated
each feature on a 5-point Likert scale, ranging from 1
(strongly disagree) to 5 (strongly agree).

workspace. The node also sends instruction-based groupings of ob-
jects, locations, and blocks to the projection node for visualization.
Objects that are next in line to be manipulated by the robot are
accented with a unique projection. Errors in the workspace stop
execution of the saved program and are similarly passed to the
projection node so the relevant elements are colored in red.

In idle mode, objects and blocks are directly passed to the projec-
tion node to generate simple, white projections that denote what
the robot detects in the workspace, but display neither color-based
grouping nor error information, since the robot is in standby.

6 EVALUATION

We performed an observational study to better understand the use
of RobotIST. Our system not only lowers the barrier to robot pro-
gramming, but also makes it more efficient to create robot programs.
Therefore, it benefits both novice and experienced programmers; it
enables the former to create programs they would not be able to
create using traditional tools and it makes it faster and less arduous
for the latter to program. Our observations reported in this paper
are focused on what experts gain using our tool. We recruited 8
participants (1 female), ages ranging from 21-34 (mean=26.75), all
recruited from the same university department. While all partici-
pants had computer science backgrounds and seven had previously
programmed manipulator robots, none had prior experience with
the situated tangible programming paradigm.

Following a short training about the tangible programming lan-
guage and features of RobotIST, we asked each participant to create
a program for the stacking task. We then asked them to fill out a
questionnaire about their experience with RobotIST, asking what
they found helpful, what was challenging, and suggestions for
improvement. For participants who had prior experience program-
ming robots, we also asked how RobotIST compares to other tools
they use for programming robots.

All participants successfully created a program for the stacking
task within 4 to 8 minutes (approximately 6.5 minutes on average).
All participants found programming task to be easy using RobotIST.
They noted both situatedness and feedback as what they liked about
the system; e.g., “No coding required - I was just able to program

SUI ’18, October 13-14, 2018, Berlin, Germany

visually, which is way faster” and T liked that I was able to see what
the robot understood via the highlighting function. It was relatively
intuitive.”

While participants positively rated all RobotIST features, workspace
and environment perception projections were rated as most helpful
(Figure 10). Describing how different features helped them, they
elaborated on their ratings. Workspace projection was popular as
it helped the participants understand where they can place tangi-
ble blocks and objects to create their programs. Block and object
projections were indicated as being helpful in figuring out whether
the robot “knows" what is in front of it and can help with debug-
ging. This was clearly articulated in participants’ comments: e.g., T
was able to debug my program when it could not see a certain block.”
Participants described instruction projections as a way to both “san-
ity check” and ensure the robot’s interpretations of the tangible
instructions matched their expectation: “This was especially useful
in the scenario that uses ‘This Object’ (object selection) blocks, since
it shows that the robot did extrapolate that I meant for it to see mul-
tiple instances of a specific kind of object.” Participants seemed to
be confident that the robot reliably identified the locations they
referenced and did not find the projections of location helpful. This
is reflected both in their ratings (instruction projections of locations
got the lowest rating of 3.5) and comments; many said they barely
noticed the feature.

Error projections were also described as helpful; e.g., “Very helpful,
since I was able to see what exactly was the issue with the program
instead of having to guess. The probing feature was also popular
as it helped them get only the necessary information about what
was wrong: ‘I liked how this could give me an error about a “specific”
part of the program, which let me march through errors.”

When comparing with other robot programming tools, partici-
pants appreciated the ease of programming and feedback ‘T liked
that I received a lot of feedback in an intuitive way (sight) and be-
ing able to see what the robot “understood.” As a “hands on” type of
person I find this style of programming quite enjoyable” but raised
concerns about the expressiveness “Faster, but more limited in the
scope of what it can do. I don’t need to hardcode a bunch of positions,
but it’s obviously not as expressive as something like Python.” They
nonetheless recognized the value of being able to quickly prototype
robot programs: “It’s a bit limited in expressive power in comparison
to a traditional programming language, but intuitive and nice for
quickly putting together high-level tasks.”

7 DISCUSSION

RobotIST leverages the situatedness that is inherent to physical
manipulation tasks to address many of the major challenges in
traditional robot programming. With RobotIST, programmers not
only express the manipulation in the physical environment, where
it belongs, but also receive feedback in that environment. RobotIST
communicates the semantics of the underlying programming lan-
guage in real-time to help the programmer better understand how
different instructions impact the overall program. RobotIST also
allows users to obtain a better mental model of the system’s capa-
bilities, by adding transparency about what the robot perceives or
how it groups different blocks with objects.

Sefidgar et al.

Situated tangible programming is unique in allowing program-
mers to accurately and unambiguously reference objects and loca-
tions where the manipulation happens, and to do so naturally with
no intermediate abstraction of the environment (e.g., list of object
ID’s or their locations). In RobotIST, we further enable the robot to
accurately and naturally reference relevant objects and locations.

While we do not currently have any explicit debugging function-
ality in RobotIST, its presentation of program semantics provides
valuable debugging information to programmers at both program-
ming and execution time. Programmers can form mental models
more easily as they program with real-time, situated information
provided by RobotIST.

Our current implementation of RobotIST has several limitations.
RobotIST provides feedback only as soon as the scene is clear and
the programmer’s body does not occlude any part of the blocks
or objects. However, the position of the camera and projector on
the robot’s head can result in situations where objects closer to the
robot occlude blocks and other objects, hindering scene detection
as well as projection. We mitigated this issue by mounting the
projector and camera at a steep downward angle relative to the
scene surface, but better solutions could be mounting the devices
directly overhead or using rear-detection and projection. The AR
tags on blocks are also visually distracting and could be replaced
by rear-sensing or RFID technology in a non-prototype system.

Our evaluation only provides preliminary support for the value
of RobotIST. More rigorous investigations are necessary to fully
understand the uses and benefits of system features, as well as the
kind of user groups and scenarios it best supports. For example, it
would be interesting to compare RobotIST and a visual program-
ming system in both single and multi-user contexts.

8 CONCLUSION

We introduce RobotIST: an interactive situated tangible robot pro-
gramming interface. In addition to situated input from programmers
(through selection blocks to reference task-relevant parts of the en-
vironment such as objects, locations, and regions), it allows situated
feedback from the robot to the programmer (through projections
onto the robot’s workspace). We discuss the differences of RobotIST
from traditional programming systems and illustrate its features
by walking through an example programming task. Finally, we
present an observational study with programmers, demonstrating
ease of use and highlighting subjective qualitative differences from
traditional robot programming.

9 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation,
Awards I1S-1552427 “CAREER: End-User Programming of General-
Purpose Robots” and 11S-1525251 “NRI: Rich Task Perception for
Programming by Demonstration.”

REFERENCES

[1] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. 2012.
Trajectories and keyframes for kinesthetic teaching: A human-robot interac-
tion perspective. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction. 391-398.

[2] S. Alexamdrova, M. Cakmak, K. Hsaio, and L. Takayama. 2014. Robot Pro-
gramming by Demonstration with Interactive Action Visualizations. In Robotics:
Science and Systems (RSS).

RobotIST: Interactive Situated Tangible Robot Programming

=

[10

[11

[12

[13]

[14]

[15

=
&

(17

(18]

[19]

[20]

[21

[22

[23]

[24]

[27

Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015. RoboFlow: A flow-
based visual programming language for mobile manipulation tasks. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 5537-5544.
Rasmus S Andersen, Ole Madsen, Thomas B Moeslund, and Heni Ben Amor.
2016. Projecting robot intentions into human environments. In Robot and Human
Interactive Communication (RO-MAN), 2016 25th IEEE International Symposium
on. IEEE, 294-301.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A
survey of robot learning from demonstration. Robotics and Autonomous Systems
57,5 (2009), 469-483.

Emilia I Barakova, Jan CC Gillesen, Bibi EBM Huskens, and Tino Lourens. 2013.
End-user programming architecture facilitates the uptake of robots in social
therapies. Robotics and Autonomous Systems 61, 7 (2013), 704-713.

Chris Beckmann and Anind Dey. 2003. Siteview: Tangibly programming active
environments with predictive visualization. In adjunct Proceedings of UbiComp.
167-168.

Antonio Bicchi and Vijay Kumar. 2000. Robotic grasping and contact: A review. In
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference
on, Vol. 1. IEEE, 348-353.

Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Robot
programming by demonstration. In Springer Handbook of Robotics. Springer,
1371-1394.

Rehj Cantrell, Paul Schermerhorn, and Matthias Scheutz. 2011. Learning actions
from human-robot dialogues. In 2011 RO-MAN. IEEE, 125-130.

Ravi Teja Chadalavada, Henrik Andreasson, Robert Krug, and Achim J Lilienthal.
2015. That’s on my mind! robot to human intention communication through on-
board projection on shared floor space. In Mobile Robots (ECMR), 2015 European
Conference on. IEEE, 1-6.

Sonia Chernova and Andrea L Thomaz. 2014. Robot learning from human
teachers. Synthesis Lectures on Artificial Intelligence and Machine Learning 8, 3
(2014), 1-121.

L. Claassen, S. Aden,]J. Gaa, J. Kotlarski, and T. Ortmaier. 2014. Intuitive Robot
Control with a Projected Touch Interface. In Social Robotics. Springer, 95-104.
Jennifer Cross, Christopher Bartley, Emily Hamner, and Illah Nourbakhsh. 2013.
A visual robot-programming environment for multidisciplinary education. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE,
445-452.

James P Diprose, Bruce A MacDonald, and John G Hosking. 2011. Ruru: A spatial
and interactive visual programming language for novice robot programming. In
Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium
on. IEEE, 25-32.

Mohamed Elbanhawi and Milan Simic. 2014. Sampling-based robot motion
planning: A review. Ieee access 2 (2014), 56-77.

Daniel Gallardo, Carles Fernandes Julia, and Sergi Jorda. 2008. TurTan: A tangible
programming language for creative exploration.. In Tabletop. Citeseer, 89-92.
Guglielmo Gemignani, Emanuele Bastianelli, and Daniele Nardi. 2015. Teaching
robots parametrized executable plans through spoken interaction. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 851
859.

Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-Robot In-
teraction Design Using Interaction Composer: Eight Years of Lessons Learned.
In The Eleventh ACM/IEEE International Conference on Human Robot Interation.
IEEE Press, 303-310.

J Harvent, Benjamin Coudrin, Ludovic BrACAathes, Jean-JosACAI Orteu, and
Michel Devy. 2013. Multi-View Dense 3D Modelling of Untextured Objects From
a Moving Projector-Cameras System. 24 (11 2013).

Michael S Horn and Robert JK Jacob. 2007. Designing tangible programming
languages for classroom use. In Proceedings of the 1st international conference on
Tangible and embedded interaction. ACM, 159-162.

Michael S Horn and Robert JK Jacob. 2007. Tangible programming in the class-
room with tern. In CHI'07 extended abstracts on Human factors in computing
systems. ACM, 1965-1970.

Michael S Horn, Erin Treacy Solovey, R Jordan Crouser, and Robert JK Jacob.
2009. Comparing the use of tangible and graphical programming languages for
informal science education. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 975-984.

Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a
rapid programming system for service robots. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 295-302.

Itseez. 2015. Open Source Computer Vision Library. http://opencv.org/
Majeed Kazemitabaar, Jason McPeak, Alexander Jiao, Liang He, Thomas Out-
ing, and Jon E Froehlich. 2017. Makerwear: A tangible approach to interactive
wearable creation for children. In Proceedings of the 2017 chi conference on human
factors in computing systems. ACM, 133-145.

Scott R Klemmer, Jack Li, James Lin, and James A Landay. 2004. Papier-Mache:
toolkit support for tangible input. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 399-406.

(28]

[29]

[35

[36

w
=

'w
&

N
=S

"~
&

[44

[45

[46

™~
&

o
=)

SUI ’18, October 13-14, 2018, Berlin, Germany

Jens Kober and Jan Peters. 2012. Reinforcement learning in robotics: A survey.
In Reinforcement Learning. Springer, 579-610.

A. Kurenkov, B. Akgun, and A. L. Thomaz. 2015. An evaluation of GUI and
kinesthetic teaching methods for constrained-keyframe skills. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RST International Conference on. 3608-3613. https:
//doi.org/10.1109/IROS.2015.7353881

Jean-Claude Latombe. 2012. Robot motion planning. Vol. 124. Springer Science &
Business Media.

D. Lazewatsky and W.D. Smart. 2012. Context-sensitive in-the-world interfaces
for mobile manipulation robots. In IEEE Intl. Symp. on Robot Human Communica-
tion (ROMAN). IEEE, 989-994.

Tomas Lozano-Perez. 1983. Robot programming. Proc. IEEE 71,7 (1983), 821-841.
Michal Luria, Guy Hoffman, Benny Megidish, Oren Zuckerman, and Sung Park.
2016. Designing Vyo, a robotic Smart Home assistant: Bridging the gap between
device and social agent. In Robot and Human Interactive Communication (RO-
MAN), 2016 25th IEEE International Symposium on. IEEE, 1019-1025.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. 2013. Learning
to parse natural language commands to a robot control system. In Experimental
Robotics. Springer, 403-415.

Timothy S McNerney. 2004. From turtles to Tangible Programming Bricks:
explorations in physical language design. Personal and Ubiquitous Computing 8,
5 (2004), 326-337.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. 2016. Tell me
dave: Context-sensitive grounding of natural language to manipulation instruc-
tions. The International Journal of Robotics Research 35, 1-3 (2016), 281-300.
Shiwali Mohn and John Laird. 2014. Learning Goal-Oriented Hierarchical Tasks
from Situated Interactive Instruction. In Proceedings of the Twenty-eighth National
Conference on Artificial Intelligence (AAAI).

David Molyneaux and Hans Gellersen. 2009. Projected interfaces: enabling
serendipitous interaction with smart tangible objects. In Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction. ACM, 385-392.
Daniel Moreno and Gabriel Taubin. 2012. Simple, accurate, and robust projector-
camera calibration. In 3D Imaging, Modeling, Processing, Visualization and Trans-
mission (3DIMPVT), 2012 Second International Conference on. IEEE, 464-471.
Scott Niekum. 2013. Alvar. http://wiki.ros.org/ar_track_alvar

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

Jun Rekimoto, Brygg Ullmer, and Haruo Oba. 2001. DataTiles: a modular plat-
form for mixed physical and graphical interactions. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 269-276.

Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud Library (PCL).
In IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China.

Theodosios Sapounidis, Stavros Demetriadis, and Ioannis Stamelos. 2015. Eval-
uating children performance with graphical and tangible robot programming
tools. Personal and Ubiquitous Computing 19, 1 (2015), 225-237.

Allison Sauppé and Bilge Mutlu. 2014. Design patterns for exploring and pro-
totyping human-robot interactions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1439-1448.

Yasaman S Sefidgar, Prerna Agarwal, and Maya Cakmak. 2017. Situated Tangible
Robot Programming. In Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction. ACM, 473-482.

Orit Shaer and Eva Hornecker. 2010. Tangible user interfaces: past, present, and
future directions. Foundations and Trends in Human-Computer Interaction 3, 1-2
(2010), 1-137.

Karun B Shimoga. 1996. Robot grasp synthesis algorithms: A survey. The
International Journal of Robotics Research 15, 3 (1996), 230-266.

Arnan Sipitakiat and Nusarin Nusen. 2012. Robo-Blocks: designing debugging
abilities in a tangible programming system for early primary school children. In
Proceedings of the 11th International Conference on Interaction Design and Children.
ACM, 98-105.

Maj Stenmark, Mathias Haage, and Elin Anna Topp. 2017. Simplified Program-
ming of Re-usable Skills on a Safe Industrial Robot: Prototype and Evaluation.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 463-472.

Ioan A. Sucan and Sachin Chitta. 2011. Movelt! http://moveit.ros.org

Brygg Ullmer and Hiroshi Ishii. 2000. Emerging frameworks for tangible user
interfaces. IBM systems journal 39, 3.4 (2000), 915-931.

Robert van Herk, Janneke Verhaegh, and Willem FJ Fontijn. 2009. ESPranto SDK:
an adaptive programming environment for tangible applications. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 849-858.
Manuela Waldner, Jorg Hauber, Jurgen Zauner, Michael Haller, and Mark
Billinghurst. 2006. Tangible tiles: design and evaluation of a tangible user interface
in a collaborative tabletop setup. In Proceedings of the 18th Australia conference
on Computer-Human Interaction: Design: Activities, Artefacts and Environments.
ACM, 151-158.

http://opencv.org/
https://doi.org/10.1109/IROS.2015.7353881
https://doi.org/10.1109/IROS.2015.7353881
http://wiki.ros.org/ar_track_alvar
http://moveit.ros.org

	Abstract
	1 Introduction
	2 Related Work
	3 Challenges in Traditional Robot Programming
	3.1 Specifying Objects and Locations of Interest
	3.2 Expressing the Task
	3.3 Interpreting Robot's Behaviour

	4 Walk-thourgh of the Robotist System
	4.1 Program Creation
	4.2 Program Execution and Debugging

	5 Implementation
	5.1 Robot Hardware and Software
	5.2 Projections
	5.3 Architecture

	6 Evaluation
	7 Discussion
	8 Conclusion
	9 Acknowledgements
	References

