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Abstract

While the cost of making industrial robots declines, their
deployment remains expensive. Widespread use of robots,
particularly in smaller industries, is more easily realized if
robot programming is accessible to non-programmers. Our
research explores techniques to lower the barrier to robot
programming. One such technique is situated tangible pro-
gramming to program a robot by placing specially designed
tangible blocks in its workspace. These blocks are used for an-
notating objects, locations, or regions, and specifying actions
and their ordering. The robot compiles a program by detect-
ing blocks and objects in the environment and grouping
them into instructions by solving constraints. We designed
a tangible language and the associated blocks and evaluated
the intuitiveness and learnability of the approach. Our user
studies provide evidence for the promise of situated tangi-
ble programming and identify the challenges to address. In
addition to improving the block design and extending the lan-
guage, we are planning to integrate tangible programming
into a holistic ecosystem of a programming environment.
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1 Introduction

Traditional automation is too costly and inflexible to satisfy
the low volume and high mix production requirements that
are commonly encountered in smaller industries. Becoming
increasingly cheaper and safer, robotic manipulators hold
the promise for revolutionizing industrial automation. Lower
cost and programmability of robots allow industries of all
sizes to benefit from automation and respond to dynamic
customer needs. There is, however, a substantial barrier to
realizing such promise: the languages and interfaces for pro-
gramming robot manipulators are notoriously complex. Pro-
gramming robots thus remains expensive, as it requires ad-
vanced knowledge and expertise and takes considerable time
even for trained experts.

Programming by Demonstration (PbD) is a popular ap-
proach to make robot programming accessible to non-experts.
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Figure 1. (a) Situated tangible programming involves pro-
gramming a robot by combining and placing specially de-
signed tangible blocks in the robot’s workspace to select
objects, locations, or regions, and to specify actions (e.g. pick
or place) and their ordering. (b) Blocks and objects in the
workspace are detected by the robot and compiled into a
robot program. (c) The robot can perform the instructed

task in new environments by executing this program. Once
compiled, the blocks can be removed from the environment;
program execution does not require the blocks to be present.

Despite considerable research in this area, there remains dif-
ficulties to address. Referencing objects or arbitrary parts of
the environment where robots’ actions take place poses a
particularly difficult end-user programming challenge. Some
programming systems incorporate a separate procedure to
specify objects or locations that are relevant for the task
and typically require the definition of coordinate frames in
relation to the environment. Others have proposed “situ-
ated” approaches, such as using pointing gestures [Fang et al.
2015], verbal descriptions [She et al. 2014], or visual annota-
tions [Fung et al. 2011], but lack the robustness needed in
industrial settings.

In our research we explore a new way of programming
robots that is both robust and takes advantage of being sit-
uated in the task context. It is also expressive enough for
the requirements of a wide range of industrial tasks. Our
approach involves placing physical, tangible blocks in the
robot’s task environment to annotate objects, locations, or
regions and to instruct the robot to perform actions in rela-
tion to those annotations. Next section further details this
new programming technique.

2 Situated Tangible Programming

We focus on programming pick-and-place tasks in industrial
settings and consider pick and place targets common in such
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settings: fixed locations or regions, as well as single or mul-
tiple specific objects. For example, a robot may obtain an
object from a feeder (fixed location) and throw it in a bin
(fixed region). We also consider different ways of picking
(from the top of an object as opposed to its side) and placing
(placing on a surface or dropping above). We assume the
robot can detect the surfaces on which locations, regions,
and objects of interest are found.

In our framework, a program is a sequence of instructions
to accomplish a certain pick-and-place task when executed
by the robot. The robot’s actions are represented with two
functions:

e pick-up-from-top/side(location ¢): Picks up the ob-
ject at ¢ from the top/side of the object. No action is
executed if no object exists at £.

e place-at/drop-above(location ¢): Places/drops cur-
rently held object at/above location £. No action is
executed if the robot’s gripper is empty.

Our programming language has three data structures:

e A location ¢ is a 3-dimensional point on a surface.

e A descriptor d is an object’s model that allows the
object to be localized in robot’s workspace.

e A region R is a set of points in a convex hull on a
surface.

The language also supports arrays of object descriptors
and locations. A program has both constants and variables
of these data structures. Constants are given as input to the
program at programming time and hold information about
known object descriptors, locations, and regions. Two vari-
ables are instantiated at programming time: an array of de-
scriptors (D = [di]ﬁil) and an array of locations (L = [é’j]jl\il)
corresponding to objects present at execution time.

Our language additionally supports for-loops, conditionals,
and the following convenience operations:

e is-same(d;, d2) compares two object descriptors and
determines if they are perceptually equal.

e is-in(¢, R) checks if location € is in region R.

e find(d, D) returns the index i of a descriptord; € D
where is-same(d, d;)=True.For multiple matches, one
is selected randomly. The function returns Null if no
match is found.

e random(R) returns a random location in region R.

This language allows a range of object manipulation pro-
grams and is extensible, without any change in semantics,
to other types of robot actions that a different end-effector
can perform (e.g. drilling or welding) so long as the action is
defined on a location, region, or object. A simple program
for picking up an object at a known location and placing it
on a certain object is given in Algorithm 1 (Fig. 1-b). If this
program were to be created manually, specifying the pickup
location and the object descriptor would require a separate
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procedure or tool. The programmer cannot simply guess the
coordinates of the location or the values in the descriptor.

Algorithm 1: A program for picking up from a known
location and placing on a specific object (Fig. 1-b).

Input :location pickup-location
descriptor green-cube

Output:Execution of actions on the robot

1 [descriptor] D;

2 [location] L;

3 D,L = perceive-workspace();

4 int j=find(green-cube, D);

5 pick-up-from-side(pickup-location);

6 place-at(L[j]);

We designed tangible blocks that allow programming in
this language and implemented a proof-of-concept percep-
tion and execution system that compiles tangible instructions
to robot motions [Sefidgar et al. 2017]. Briefly, we considered
selection, action, and ordering blocks that once put together
realize pick-up or placement at various targets.

3 Evaluations

We conducted three user studies to examine the intuitive-
ness and learnability of the language and the associated
blocks, and to identify areas for improvement. More specifi-
cally, we examined whether people can understand tangible
instructions or create programs with them. We compared
program comprehension and program creation performance
before and after training in our first study and evaluated
the same capabilities without any training in two follow-up
studies [Sefidgar et al. 2017]. We found that situated tangible
programming allows participants to program a robot with
minimal or no instruction. We cannot draw a direct compari-
son with instructions given to participants for other end-user
robot programming techniques; however, participants’ abil-
ity to program the robot without any instructions is unique.
Further comparative studies will highlight the advantages
and limitations of this approach against others.
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