
A System for Situated Tangible Programming of Robot Skills

Yasaman S. Sefidgar1, Sarah Elliott1, Maya Cakmak1

Abstract— Challenges in robot programming pose a major
barrier to robotic automation in small and medium sized
enterprises. Skill-based programming interfaces can lower this
barrier by encapsulating low-level functionality into high-level
programming blocks, with parameters that non-experts can
easily provide. We propose situated tangible robot programming
within this paradigm to create robot programs by placing
specially designed tangible blocks in the robot’s workspace.
Users create programs by sequencing action blocks that corre-
spond to different high-level actions, such as pick and place,
and instantiate the parameters of those actions using selection
blocks that specify objects, locations, or regions in the robot’s
workspace. The robot detects the blocks and objects and
compiles them into executable programs. We present a proof of
concept implementation of this technique within pick-and-place
task domain.

I. INTRODUCTION

Customization marks a fundamental shift in manufacturing

in recent years, where highly varied products are produced

in small batches over shorter production life cycles. Tra-

ditional automation is too inflexible and costly to address

the demands. In contrary, robots have the potential to serve

the high mix and low volume requirements above, with

programmability as their key advantage [1]. However, robot

programming is notoriously complex and time-consuming.

Despite its benefits, robotic automation is not yet affordable

for many small and medium sized businesses.

Easy to learn and use robot programming tools hold

the promise for large impact by lowering the barrier to

robot programming, thus allowing non-experts to deploy

robots for various tasks with short down times. As a result,

robotics companies now place more emphasis on end-user

programmability. For instance, ReThink’s robots, Baxter and

Sawyer, are advertised as being “simple to train, flexible,

and re-deployable”; Franka Emika’s upcoming robot, dubbed

“everybody’s robot,” offers “visually intuitive programming.”

Task-level programming enables a user-centered method-

ology to robot programming by hiding low-level complexity

in high-level blocks [1]. Each block, typically referred to as

a skill, performs an action to impact the robot’s environment.

Skills have parameters that can be defined through user

interactions [2]. Different interaction techniques for various

tasks have been explored in literature, e.g. kinesthetic oper-

ation for picking [3], natural language for assembly [4], or

augmented-reality for welding [5]. In most cases, robotics

experts carefully develop skills, and except for instantiating

the parameters, end-users have no control over a skill.

1 Allen School of Computer Science and Engineering, University of
Washington, 185 Stevens Way, Seattle, WA 98195 USA {einsian,
sksellio, mcakmak}@cs.washington.edu

Fig. 1. (a) Situated tangible programming involves programming a robot
by combining and placing specially designed tangible blocks in the robot’s
workspace to select objects, locations, or regions, and to specify actions
and their ordering. (b) Blocks and objects in the workspace are detected by
the robot and compiled into a robot program. (c) The robot can perform
the instructed task in new environments and in the absence of blocks by
executing this compiled program.

We propose situated tangible programming to allow end-

users to create robot programs by sequencing existing skills

and intuitively instantiating their parameters (Fig. 1). These

skills take locations, regions, or objects as parameters and

instruct the robot to perform actions relative to those param-

eters. We evaluated the intuitiveness and learnability of this

technique for pick-and-place tasks in [6]. Here, we briefly

review the specifics of situated tangible programming and

then present a proof-of-concept implementation.

II. SITUATED TANGIBLE PROGRAMMING

We propose programming robots by placing tangible

blocks in the robot’s physical workspace to specify skills and

their ordering and to instantiate skill parameters. Below, we

present the programming language underlying this approach

and describe the situated tangible programming process.

A. Skill-based Programming Language

A program is a sequence of skills. We focus on skills used

for pick-and-place tasks in industrial settings. We consider

fixed locations or regions, as well as single or multiple

specific objects for pick or place as these are commonly

featured in industrial manufacturing. We assume the robot

can detect the surfaces, where locations, regions, and objects

of interest can be found. The system supports the follow-

ing four skills that take a location, a region, an object,

or a list of objects as parameters: pick-up-from-top,

pick-up-from-side, place-at, and drop. A loca-

tion is a 3-dimensional point on the robot’s workspace and

a region is a convex hull. Objects are represented with a

descriptor that allows them to be localized in the workspace.

This language can be extended to additional skills (e.g.

drilling or welding) and parameters (e.g. duration) without

any changes in semantics.



B. From Blocks to Skills

A skill is formed by the following three types of blocks:

Selection blocks: These blocks select a location, a

region, a single object, or multiple objects (Fig. 2). When

placed in the environment within a skill, selection blocks

specify a parameter of the skill (Fig. 3). A location on a

surface is indicated by the tip of an arrow placed on the

surface. A region on a surface is identified by two L-shaped

corner brackets. A single object is selected by an arrow

placed on the surface pointing towards the object. A group

of objects is specified by enclosing them between two corner

brackets.

Action blocks: Action blocks identify the type of skill

(Sec. II-A, Fig. 2) and are always attached to a selection

block that identifies the skill parameter (Fig. 3). If a pick or

place/drop action block is attached to a location selector

(Fig. 3(a,b)), the action is performed at that location. A pick

action requires that an object be found at that location at

execution time, whereas the place/drop action will adjust the

height of the action depending on whether the location is

empty or already has an object.

If a pick action block is attached to a region selector

(Fig. 3(c)), the robot will pick up all objects found in that

region at execution time. If a place action block is attached

to a region selector (Fig. 3(d)), the robot will place the

currently held object at a random location in that region.

If a pick or place/drop action block is attached to

a single object selector (Fig. 3(a,c)), then the descriptor of

that object is stored as the skill parameter. The program will

locate this object in the new scene and perform the action at

its location.

If a pick action block is attached to a multiple object

selector (Fig. 3(d)), the robot will pick all instances of

objects that are the same as an object in the selected set.

If a place/drop action block is attached to a multiple

object selector (Fig. 3(b)), the robot will find an object in

the current scene that matches any of the selected objects,

and will place/drop the currently held object on it.

Ordering blocks: Ordering blocks have positive integers

and always attach to action blocks. They indicate the order

of skills in the program. To compile a complete program

from a set of blocks, our system uses the ordering constraints

specified by these blocks, together with the constraint that

Fig. 2. Selection (arrows and paired brackets) and action (shown at scale
on left for better viewing).

single object selectors

(a) (b)

(c) (d)

pick place pick

drop

drop

pick

place

pick

location selectors

region selectors

multiple object

selectors

Fig. 3. Example situated tangible programs. Programs vary in the type of
selection blocks used as part of the pick and place/drop skills.

each pick skill should be paired with a place/drop skill

(Fig. 3).

III. SYSTEM IMPLEMENTATION

Situated tangible robot programming can be implemented

on robot manipulator platforms with visual perception and

basic contact control capabilities. We used a PR2 robot for

our proof-of-concept implementation detailed below.

A. Hardware and Software

PR2 is a 14-DOF dual-arm robot (7 DOF’s per arm) on

an omnidirectional base. The 1-DOF grippers can open to

a maximum of 9cm. We used the right arm only but the

implementation can be extended to both arms. We assumed

the robot is fixed in its workspace and provide no calibration

procedure.

We implemented the system in ROS framework and used

off-the-self libraries for basic perception (Alvar AR Tag

tracking1 and Point Cloud Library table top segmentation2)

and motion planning (MoveIt!3).

B. Architecture

Our system to realize situated tangible programming has

three modes of operation: program creation, program execu-

tion, and idle. In program creation mode, the robot analyzes

the scene to find objects and blocks to then form skills

and instantiate their parameters. The skills are saved as a

program to be run later in execution mode. When in neither

creation or execution modes, the system is idle. There are

a number of ways to control the mode of operation. We

created Edit and Run tangible blocks that when placed in

robot’s view would activate program creation and program

execution modes respectively. The system will enter idle

mode if neither Edit nor Run block is present in the scene.

Below, we describe implementation specifics of the two

major modes of operation. Fig. 4 depicts the overall system

architecture.

1http://wiki.ros.org/ar_track_alvar
2http://pointclouds.org/
3http://moveit.ros.org/



GetScene

G
e
tS
c
e
n
e

G
e
tP
ro
g
ra
m

ModeChange

ModeChange

GetBlocks

GetGraps

GetRealease

Fig. 4. Situated tangible programming system architecture. Blue boxes
represent system nodes while green boxes represent functionality available
by external packages. Single head arrows indicate publisher-subscriber
connections with the arrow pointing to the subscriber. Double head arrows
represent client-service relations. The Object Processing node processes
point clouds from Kinect and provides a service for surface and object
information. The Tag Parsing node publishes mode changes and provides a
service for the semantic meaning of blocks. The Compilation node compiles
tangible blocks and objects into skills that form a program and provides a
service to return the compiled programs. The Execution node combines
current scene information with compiled program, obtains grasp/release
information for the object to pick/release by calling the relevant services,
and turn this information to MoveIt! calls.

Program Creation: The Compilation node handles pro-

gram creation. It first obtains a list of tangible blocks, ob-

jects, and surfaces supporting those objects from the Object

Processing and Tag Parsing nodes. Perception of blocks

is simplified using AR tags that are incorporated into the

block design and allow us to determine both location and

orientation of blocks. Each type of block is given a unique

identifier. PCL table top segmentation returns the dominant

surface in the scene and a list of segmented objects on it.

In the simplest representation, objects are modeled by the

size of their bounding box. Other more sophisticated object

representations can additionally account for shape, color, and

category of objects.

Given a list of tangible blocks, the Compilation node

first forms skills by grouping selection, action, and ordering

blocks based on their relative placement and distance. We

have devised a peg/hole attachment mechanism on blocks

to naturally enforce valid formation of skills. Next, the

Compilation node instantiates the parameters of skills based

on the type of their selection block. For location and region

selectors, the specific location and region values define the

parameter. For each single object selector, the Compilation

node iterates over the list of objects to determine which

object is in the direction of the selector arrow on the surface

within a certain distance. For each multiple object selector,

it iterates over the list of objects to determine which objects

are within the convex hull created by the selectors on the

surface. Selected objects define the parameter values.

While in program creation mode, the Compilation node

constantly analyzes the scene to obtain the most recent

version of the program. Upon mode change, the program

is saved and can be retrieved later on in execution mode.

Program Execution: The Execution node manages pro-

gram execution. It first obtains the program to execute by a

service call to the Compilation node. It then loops through

the program until the system exits the execution mode.

The execution is resumed from where it was left off when

operation mode changes to idle and then back to execution.

To execute each skill of a program, the Execution node

first obtains scene information through Object Processing

service. It then examines the objects against skill parameters

and uses that information to generate appropriate motion by

calling Grasp or Release Generation services. These services

were written to generate simple grasps and releases by ana-

lyzing the scene geometry. In the future, such systems could

incorporate external grasp or release generation software.

IV. EXAMPLE APPLICATIONS

Despite its simplicity, our proposed system for situated

tangible programming allows the robot to complete important

tasks. Fig. 5 shows two programs and how the robot executes

each in a different scene. The one on top instructs the robot

to pick a specific object (the green cylinder) and place it at

the specified point (marked with a blue cross for clarity).

When executing this program in a scene with several green

cylinders, the robot stacks up the objects at the specified

point. The program shown at the bottom instructs the robot

to pick items from one region and place them in a different

region (e.g. when removing items from a conveyor belt into

a bin). Only the items within the region are manipulated.

Fig. 5. Sample situated tangible programs and their executions. (a) The
program instructs the robot to pick a specific object and place it at a certain
point. The blue crosses in the images mark the tips of the arrows for clarity
but are not used by our system. By repeatedly executing this program we
can stack all green cylinders in the workspace. (b) The program instructs
the robot to collect all objects in the right region and place them in the
left region (e.g. when removing items from a conveyor belt into a bin). The
borders of the regions are marked with blue lines for clarity only.

REFERENCES

[1] T. Lozano-Perez, “Robot programming,” Proceedings of the IEEE,
vol. 71, no. 7, pp. 821–841, 1983.

[2] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated

Manufacturing, vol. 37, pp. 282–291, 2016.

[3] R. S. Andersen, L. Nalpantidis, V. Krüger, O. Madsen, and T. B. Moes-
lund, “Using robot skills for flexible reprogramming of pick operations
in industrial scenarios,” in Computer Vision Theory and Applications

(VISAPP), 2014 International Conference on, vol. 3. IEEE, 2014, pp.
678–685.

[4] M. Stenmark and J. Malec, “Describing constraint-based assembly tasks
in unstructured natural language,” IFAC Proceedings Volumes, vol. 47,
no. 3, pp. 3056–3061, 2014.

[5] R. S. Andersen, T. B. Moeslund, O. Madsen et al., “Intuitive task
programming of stud welding robots for ship construction,” in Industrial

Technology (ICIT), 2015 IEEE International Conference on. IEEE,
2015, pp. 3302–3307.

[6] Y. S. Sefidgar, P. Agarwal, and M. Cakmak, “Situated tangible robot
programming,” in Proceedings of the 2017 ACM/IEEE International

Conference on Human-Robot Interaction. ACM, 2017, pp. 473–482.


	INTRODUCTION
	SITUATED TANGIBLE PROGRAMMING
	Skill-based Programming Language
	From Blocks to Skills

	SYSTEM IMPLEMENTATION
	Hardware and Software
	Architecture

	EXAMPLE APPLICATIONS
	References

