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ABSTRACT

This paper introduces situated tangible robot programming,
whereby a robot is programmed by placing specially de-
signed tangible “blocks” in its workspace. These blocks are
used for annotating objects, locations, or regions, and spec-
ifying actions and their ordering. The robot compiles a
program by detecting blocks and objects in its workspace
and grouping them into instructions by solving constraints.
We present a proof-of-concept implementation using blocks
with unique visual markers in a pick-and-place task domain.
Three user studies evaluate the intuitiveness and learnabil-
ity of situated tangible programming and iterate the block
design. We characterize common challenges and gather feed-
back on how to further improve the design of blocks. Our
studies demonstrate that people can interpret, generalize,
and create many different situated tangible programs with
minimal instruction or with no instruction at all.
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1. INTRODUCTION

Programmability is a key advantage of industrial robots
over traditional automation [16]. Robot arms, such as Uni-
versal Robot’s UR5, KUKA’s LWR, or ABB’s YuMi, can
be programmed to perform a wide variety of manipulation
tasks. Indeed, these robots are currently deployed in var-
ious settings, performing tasks such as loading, unloading,
sorting, kitting, packaging, assembly, or disassembly of a di-
verse set of items, from electronics to food. These robots
are often programmed to perform their unique task in their
specialized environment by highly trained experts, largely
because the languages and interfaces for programming these
robots are notoriously complex. For example, they usually
require users to specify coordinate frames, and as UR Man-
aul puts it, “A problem with such frames is that a certain
level of mathematical knowledge is required to be able to
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Figure 1: (a) Situated tangible programming in-
volves programming a robot by combining and plac-
ing specially designed tangible blocks in the robot’s
workspace to select objects, locations, or regions,
and to specify actions and their ordering. (b) Blocks
and objects in the workspace are detected by the
robot and compiled into a robot program. (c) The
robot can perform the instructed task in new envi-
ronments and in the absence of blocks by executing
this compiled program.

define such coordinate systems and also that it takes a con-
siderable amount of time to do this, even for a person skilled
in the art of robot programming and installation” [1].

The development of lower-cost and human-safe manipu-
lators has increased the frequency of use of robotic arms by
small and medium businesses in their manufacturing pro-
cesses and even outside industrial contexts. As a result,
robotics companies now place more emphasis on letting end-
users program robots by themselves to reduce the cost of
programming and eliminate down-time. For instance, Re-
Think’s robots, Baxter and Sawyer, are advertised as being
“simple to train, flexible, and re-deployable”; Franka Emika’s
upcoming robot, dubbed “everybody’s robot,” offers “visu-
ally intuitive programming.”

Despite these efforts by robotics companies and decades
of research on robot Programming by Demonstration, many
challenges remain in enabling non-experts to program robots.
Referencing objects or arbitrary parts of the environment is
particularly challenging for end-users. Most industrial tools
support using the robot’s arm to pre-record a set of coor-
dinate frames. As noted, this separate step complicates the
programming process and requires additional skills. While
the proposed “situated” techniques, such as using pointing
gestures 18} 8], possibly combined with verbal descriptions
|141 19,7 |15} |27], simplify referencing objects and locations,
they are not robust enough for industrial settings.

This paper proposes a new way to program robots that
takes advantage of being situated in the task context. This
approach involves placing physical, tangible “blocks” in the
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robot’s task environment to annotate objects, locations, or
regions and to instruct the robot to perform actions that ref-
erence them. We first develop a programming language that
supports programming of typical industrial robotic tasks
and implement a proof-of-concept system with blocks that
are easy to detect. We present findings from a user study
(N=20) that examines the intuitiveness and learnability of
situated tangible programming, and two follow-up studies,
with an improved block design, that examine program in-
terpretation (N=18) and creation (N=6) without any in-
structions. Our studies demonstrate that situated tangible
programming offers a promising approach that lets novices
program robots with minimal training and inform further
improvements to the block design.

2. RELATED WORK

Our work contributes a new way of programming robots.
Traditionally, industrial robots are programmed by saving
a sequence of robot poses, assuming the position of all rel-
evant items are known at programming time (e.g., a trash
can that has a fixed position or parts that get placed at the
same location and orientation by a feeder). Programming by
Demonstration (PbD) extends this approach to program-
ming capabilities that generalize to new situations. PbD
has been widely researched, with work focusing on types of
demonstrations [2], modalities for demonstration [29} 9], and
alternative task representations 23| [21]. PbD work that fo-
cuses on manipulation tasks often involves a single object
of interest in the workspace, avoiding the challenge of ref-
erencing objects. Exceptions include [3] and [24] that sup-
port limited referencing by automatically detecting objects
involved in the task from a kinesthetic demonstration.

While PbD is the most popular technique in the litera-
ture, other ways in which end-users can program robots have
been proposed. These include programming through natural
language instructions (e.g., |20, [7]) or visual programming
(e.g., [4,[13,/11]). Although the concept of programming ma-
nipulators with tangibles is novel, tangibles have been used
for controlling robots, where the robot performs a task as
long as the tangibles remain in its workspace. For example,
Zhao et al. proposed placing paper tags (“Magic Cards”)
on the floor to task Roomba-like robots[30]. Or, Luria et
al. introduced tangibles (“phicons”) for communicating with
a social robot to control smart home devices [17].

The promise of natural and direct interactions has made
tangible interfaces appealing across varied application do-
mains from music |22] and creative exploration [10] to math
[26] and 3D modeling [5]. One controlled experiment with
children provide evidence for benefits of tangible program-
ming over visual programming [25]. Two different tangible
programming systems developed for K-12 outreach were ac-
tually used for creating simple navigation programs for toy
robots [12} |28]. Considering the situatedness inherent to
many robot programming tasks, tangible programming is a
promising candidate for accessible end-user programming of
robot manipulators.

3. SITUATED TANGIBLE PROGRAMMING

‘We propose programming robots by placing tangible blocks
in robot’s physical workspace. To that end, we first develop
the underlying programming language and design the blocks
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Figure 2: Example situated tangible programs in
different scenes. Programs vary in the type of selec-
tion blocks used as part of the pick and place/drop
instructions.
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that allow creating programs in this language. Then, we
present a proof-of-concept system implementation.

3.1 Domain and Programming Language

We focus on programming pick-and-place tasks in indus-
trial settings. We assume the robot can detect the surfaces,
where locations and regions of interest are defined, and the
objects of interest on these surfaces (e.g., parts and contain-
ers). The robot’s actions are represented with four functions
that can be called within a program: pick-up-from-top,
pick-up-from-side, place-at, and drop. Actions take one
of four types of arguments: a location, an object, a region,
or a list of objects. A location is a 3-dimensional point on
the robot’s workspace and a region is a convex hull. Ob-
jects are represented with a descriptor that allows them to
be localized in the robot’s workspace.

In our framework, a program is a sequence of instructions
that accomplish a certain pick-and-place task when executed
by the robot. Programs can have constants whose values are
determined at programming time. In addition each program
has one wvariable, a list of all available objects, instantiated
at execution time. Our language also has a number of conve-
nience functions and control flow operators that allow loop-
ing or branching in the program.

3.2 Situated Tangible Blocks

Situated tangible programming involves creating programs
in the language described in Sec. [3.1] using a set of physical
blocks. Our design involves three categories of blocks.

Selection blocks (“selectors”). The first set of blocks
allow selecting a single object, multiple objects, a location,
or a region at programming time to instantiate a constant
in the program. Fig. 2] shows examples of these blocks used
as part of situated tangible programs. A single object is se-
lected by an arrow placed on the surface carrying the object
pointing towards it. A group of objects is selected by en-
closing them between two 90° corner brackets. A location
on a surface is indicated by the tip of an arrow placed on
the surface. A region on a surface is indicated by two corner
brackets. Note that a region specified in this way will have
four corners, but is not guaranteed to be a rectangle.



Action blocks. Action blocks correspond to the robot
action functions described in Sec. Bl To instantiate the
parameter of the function, the block is attached to a se-
lection block. Fig. 2] shows how different action blocks are
attached to selection blocks as part of a program. If a pick
or place/drop action block is attached to a location selec-
tor (Fig.[2[a,b)), the action is performed at that location. A
pick action requires that an object be found at that location
at execution time, whereas the place/drop action will adjust
the height of the action depending on whether the location
is empty or already has an object.

If a pick or place/drop action block is attached to a sin-
gle object selector (Fig. a,c)), then the descriptor of that
object is added as a constant input to the program. The pro-
gram will locate this object in the new scene and perform
the action at its location.

If a pick action block is attached to a region selector
(Fig. c)), the robot will pick up all objects found in that
region at execution time. If a place action block is attached
to a region selector (Fig.[2(d)), the robot will place the cur-
rently held object at a random location in that region.

If a pick action block is attached to a multiple object
selector (Fig.[2{(d)), then the resulting instruction will make
the robot pick all instances of objects that are the same as an
object in the selected set. This creates a loop in the program.
If a place/drop action block is attached to a multiple object
selector (Fig. [2(b)), then the resulting program will find an
object in the current scene that matches any of the selected
objects, and will place/drop the currently held object on it.

Ordering blocks. Ordering blocks have positive integers
that indicate the order of instructions in the program. To
compile a complete program from a set of blocks, our system
uses the ordering constraints specified by these blocks, to-
gether with the constraint that each pick action needs to be
paired with a place/drop action. Fig.|2|shows how ordering
blocks are attached to action blocks.

From blocks to programs. Given a scene with a set of
objects and blocks, the robot needs to first group blocks
and objects together (see Sec. for implementation de-
tails). A set of blocks form a valid program if: (a) each
action block has a selection block and an ordering block as-
sociated with it, (b) all pick actions have odd number order-
ings and all place/drop actions have even number orderings
(i.e., the program starts with a pick and what is picked is
placed/dropped before the next pick), and (c) object selec-
tors have objects associated with them.

Loops are created whenever a pick action is associated
with a multiple object or region selector. The place/drop
action that follows the pick action is considered part of the
loop. Conditionals are automatically added to the program
for checking membership in lists of objects, checking exis-
tence, or checking location-region relationships.

3.3 Visual Block Design

The design of the language and blocks described above are
based on the requirements of the functionality that we aim
to provide. While it is important for blocks to be robustly
perceivable by the robot, there is flexibility in how they look.
Our design goal is to maximize intuitiveness and learnability
of the blocks and combined instructions for end-users. To
that end, we explore the following visual and physical de-
sign elements. Our studies involved two iterations of block
design, which we refer to as D1 and D2.
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Figure 3: Situated tangible block libraries: (a) ini-
tial design (D1), (b) improved design (D2), (c) icons
in D2.

Shape: Block shapes are chosen to reflect their functional
category. Arrows are used for pointing to a location or to a
single object to select it. Two L-shaped brackets are paired
together to select an approximately rectangular region or
a set of objects included in the region, analogous to using
thumb and index fingers with two hands to indicate a region
on a surface. Other blocks are square shaped, appropriately
sized relative to the arrows and brackets, to allow combina-
tions of blocks to look uniform.

Text and icons: Short word phrases and visual icons (D2
only) clarify the specific function of action or selection blocks.
For instance, single object selectors and location selectors
that have the same arrow shape, have different phrases on
them. Action blocks have a verb phrase and ordering blocks
have a single integer. The phrases used on D1 selectors
are direct reflections of the formal terminology used here to
describe different blocks. In contrast D2 uses natural lan-
guage phrases. For instance, the single object selector has
the phrase “select object” in D1 and “this object” in D2.
Capitalization is used for emphasis as shown in Fig. 3] In
D2, we also add prepositions to some action blocks (“place
on,” “drop in”) and made separate location selectors for pick
(“anything here”) versus place (“here”).

Color: Block colors (only available in D2) are also used to
distinguish between block types that have the same shape.
In addition, pairs of brackets were colored the same to help
with association.

Peg/hole connectors: Blocks can be attached to one an-
other through uniquely spaced peg-and-hole connectors that
implicitly indicate the possibility of combining blocks while
preventing false combinations.

3.4 System Implementation

We present a proof-of-concept implementation of situated
tangible instructions.

Perception. Our system first detects all surfaces and ob-
jects of interest, as well as all tangible program blocks in the
scene. Perception of blocks is simplified using fiducials (also
known as AR Tags) incorporated into the block design. Our
implementation uses the Alvar AR Tag tracking libraryEI
Each type of block is given a unique identifier. Asymmetric
AR Tags also allow uniquely determining the orientation of
the blocks, allowing us to determine arrow and bracket ori-
entations. Surfaces and objects are perceived using the table
top segmentation functionality in the Point Cloud Library

Thttp://wiki.ros.org/ar_track_alvar
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(PCLE This returns the dominant surface in the scene and
a list of segmented objects on it. Objects are represented by
their size, shape, and color.

Program compilation. Given a list of objects and lists of
selection, action, and ordering blocks detected in the scene,
our system produces a program with the following proce-
dure. First, we iterate over all selection blocks to determine
the program constants. For each single object selector, we
iterate over the set of objects to determine which object is
in the direction of the selector arrow on the surface within
a certain distance. For each multiple object selector, we it-
erate over the set of objects to determine which objects are
within the convex hull created by the selectors on the sur-
face. Selected objects are saved in the program. Next, we
iterate over all location and region selectors, and we save the
constant location and region values as part of the program.

The next step is to iterate over all action blocks and assign
them to a selector block. The peg/hole attachment mecha-
nism on the blocks ensure that the displacement between a
selection and action block follows a pattern and their orien-
tations are aligned. These constraints allow uniquely iden-
tifying the assignment of action blocks to selection blocks.
Next, we iterate over all ordering blocks and assign them to
an action block. After grouping all objects and blocks, the
final step is to compile the program as described in Sec.

Actions and program execution. Our system is imple-
mented on a PR2 robot (partially shown in Fig. 7 using the
RGBD sensor mounted on the head and one of its 7 degree-
of-freedom arms. The robot’s actions are pre-defined as a
sequence of poses relative to detected object locations. Pick
actions have a pre-grasp, grasp, and lift pose determined
based on the size of objects used in our evaluation and the
type of pick (from top or from side). Place actions have a
pre-placement, placement, and clear pose determined based
on the size of objects. Drop actions have a single drop pose
where the gripper is opened. All poses were pre-specified
using kinesthetic demonstrations. During program execu-
tion, the robot determines the current set of objects and
computes the poses for all actions that are relative to ob-
jects. The robot uses motion planning, as implemented in
Moveltﬂ to move from one pose to the next.

4. EVALUATION

Following a human-centered approach, we evaluate the
intuitiveness and learnability of situated tangible program-
ming with users of varied backgrounds. We describe our
evaluation spanning three studies; the first with our initial
block design (D1) and the second and third with an im-
proved design (D2) based on feedback from the first study.

4.1 Study 1: Initial Design

Programming languages and tools can be evaluated on
three types of tasks: program comprehension, program cre-
ation, and debugging [6]. Our evaluation focus on the first
two. To evaluate how well a program is comprehended,
we employ two techniques: demonstration tests where we
present participants with a program, situated in a scene, and
ask them to demonstrate what the robot should do in that
scene, and generalization tests in which we first show par-
ticipants a program, situated in a programming-time scene,

Zhttp://pointclouds.org)/
*http://moveit.ros.org/
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and next present them with robot’s executions of that pro-
gram in a different execution-time scene, and ask whether
the execution is consistent with the program.

To evaluate how well people can use situated tangible
blocks to create programs, we perform program creation tests
where we describe the desired behavior of the program to be
created. We provide participants with a set of objects and
blocks and ask them to create a scene and a corresponding
program with the described behavior.

4.1.1 Materials

Programs: Both demonstration and generalization tests
involve programs with one pick and one place instruction
where varied selector types are used for parametrizing the
pick and place actions. Scenes and programs were prepared
ahead of time and glued onto foam boards for consistency
across participants. Scenes involved abstract objects varied
in color, size, and shape (Fig. [2). In the demonstration
test, participants are presented with different groups of four
programs such that they see all selector and action types an
equal number of times.

ID  Pick selector Place/drop selector
P1: location selector single object selector
Ps: single object selector location selector

Ps:  location selector region selector

Py:  location selector multiple object selector
Ps:  region selector region selector

Ps:  multiple object selector  region selector

Table 1: Programs used in the generalization tests.
P is also shown in Fig. [2(d).

Robot executions: In the generalization test, participants
are presented with two executions of six different programs
covering different combinations of selectors (Table . The
executions occur in different scenes than those in which the
program was presented to the participant. They differ in the
objects involved in the scene and their placements. Seven
out of 12 executions are fully consistent with the given pro-
gram and five executions have an inconsistency (three during
picking and two during placement). The executions are pre-
sented as a video of the robot manipulating objects in the
scene (Fig. [4)). Participants are asked to separately assess
whether the pick actions and the place/drop actions in the
execution are consistent with the given program, thus an-
swering 24 yes/no questions presented randomly through a
browser.

Program creation tasks: For program creation tests, par-
ticipants are given a natural language description of three
desired program behaviors and pictures illustrating the state
of the scene before and after a sample execution of each
(Fig. |p). Pa involves picking up an object placed at a par-
ticular corner of the table and placing it at the opposite
corner. The intended program involves a pick and a place
action, each parametrized with a location selector. Pg in-
volves creating a stack of two specific objects (blue square
at the bottom, red triangle on the top). The intended pro-
gram involves two pick and place actions; the pick actions
are parametrized with single object selectors and the place
actions are parametrized with location selectors, though the
placement of the second object on the first could also be
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Figure 4: Filmstrips of example executions from
the videos used in the generalization test. (a) A
consistent execution of Ps. (b) An inconsistent exe-
cution of P;.
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Figure 5: Before/after pictures used for describ-

ing the desired program behaviors in the program
creation tests.

accomplished with a single object selector. Pc involves col-
lecting triangles (of any color) and placing them near a par-
ticular corner of the table. The intended program involves
a loop of pick and place actions, where the pick actions are
parametrized with items from a multiple object selector and
place actions are parametrized with a region selector.

4.1.2 Protocol

Our first study has three parts. In the first part, partic-
ipants perform the demonstration and generalization tests
without any instructions on what different blocks mean. In
the second part, participants are first instructed about what
each block means and how they can be combined. We then
repeat the demonstration and generalization tests. In both
parts we emphasize that objects are distinguished based on
their shape, size, and color as the generalization test re-
quired such distinctions. Demonstration tests involve a dif-
ferent subset of programs, but the generalization questions
are exactly the same. Order of programs in both tests are
counter-balanced across participants. In the third part of
the study, participants perform the program creation tasks.

4.1.3 Measurements

We record participants’ demonstrations of each program
in the demonstration tests, their yes/no answers and rea-
soning in the generalization tests, and their subjective rat-
ings of confidence interpreting different tangible blocks in
the form of 5-point Likert-style questions. In the second
part, we additionally ask participants to compare their ini-
tial interpretations with our definitions and suggest alter-
natives that could have helped them better understand the
intended meaning of each block. In the third part, we record
programs created by participants and ask them to rate their
experience programming with blocks.

477

Two authors double-coded videos of participants’ demon-
strations for consistency with the selection and action blocks
as well as looping behavior in the program. Inconsistent
demonstrations were further analyzed to identify common
errors. Programs created by participants were scored for
proper formation and placement of instructions and the over-
all program logic. Errors were noted and analyzed.

4.2 Follow-up Studies with Improved Design

Our follow up studies aim to assess the impact of the re-
design on the intuitiveness of situated tangible programming
without any instructions about the meanings of the blocks.
To that end, Study 2 repeats Part 1 of Study 1 with the
improved design (D2) to evaluate program comprehension.
Study 3 evaluates program creation without any instruction
and without having seen any example programs before. We
give participants an abstract overview of situated tangible
programming and then we ask them to brainstorm at least
two interpretations for each block separately. Next, we ask
them to connect blocks together and to brainstorm inter-
pretations of the combinations. We do not give any feed-
back on their interpretations. Finally, we present them with
the same program creation tests as in Study 1 in counter-
balanced order.

S. FINDINGS

Participants for our studies were recruited from campus-
wide mailing lists at the authors’ university. Study 1 had 20
participants (12 F, 8 M); Study 2 had 18 participants (7 F,
11 M), and Study 3 had 6 participants (3 F, 3M). Study 1
took between 90 to 120 minutes, and Study 2 and 3 took 60
minutes.

We compare participants’ performance on demonstration
and generalization tests in two ways. First, we compare
performance in Study 1, before and after being given in-
structions about the meanings of blocks. We refer to these
two conditions as D1PRE and D1POST. Second, we compare
performance before being given instructions for designs D1
(Study 1) versus D2 (Study 2). We refer to these as D1PRE
and D2PRE. Note that the first comparison is within sub-
jects and the second is between subjects. Hence, we perform
paired t-tests between D1PRE and D1P0OST, and independent
t-tests between D1PRE and D2PRE. The program creation
tests in Study 1 and Study 3 are not comparable as they
differ both in the design and the amount of instruction and
practice provided prior to the task. We treat those condi-
tions as observational studies.

5.1 Overall Performance

After minimal instructions, most participants were able
to correctly interpret situated tangible programs for various
tasks. In the D1POST condition, participants reached >90%
across all metrics in the demonstration tests (Fig.[6[a)) and
around 90% in the generalization tests (Fig. [6(b)). Almost
all scores were significantly higher in D1POST compared to
those achieved before being given instructions (D1PRE).

The redesign of the blocks (D2) significantly improved
people’s demonstrations in all aspects except in their in-
terpretation of placement actions (already high with D1).
Participants correctly interpreted around 80% of selection
blocks attached to place/drop and above 90% of other com-
ponents of programs in D2PRE. These are high scores to
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Figure 6: (a) Percentage of demonstrations (out
of four) that were consistent with the program pre-
sented in the demonstration tests, in terms of in-
terpretations of the selection and action blocks used
for pick and place/drop as well as looping behav-
ior, averaged across participants. (b) Percentage
of correctly answered questions (out of 12) in the
generalization test for pick and place portions of
the robot’s execution, averaged across participants.
Statistically significant differences (p<0.05) are in-
dicated with a *.

achieve without any instructions. However, people’s ability
to answer generalization questions did not improve with D2.

In Study 1, 70% of participants created correct programs
for at least one program creation task. 40% successfully cre-
ated correct programs for all three tasks. Program P4 (an
abstraction of machine tending tasks) was the easiest (65%
success rate), whereas Pp (an abstraction of assembly tasks)
was the hardest (40% success rate). Achieving these rates
with 5-minute instructions is considerable. In Study 3, in
the absence of any instructions using D2, two out of six par-
ticipants correctly programmed P4 and three participants
correctly programmed Pg. One participant formed a valid
program for P4 but the program did not satisfy the specified
task (7.e., it had an object selector instead of a location se-
lector). None of the participants correctly programmed Pc;
however, two had only a minor error.

5.2 Challenges with Program Comprehension

Table |2| summarizes the common challenges participants
had in the demonstration tests. One of the most common
challenges in D1PRE was in associating the two L-shaped
brackets as parts of one selector. In D2, we tried to miti-
gate this issue by coloring paired brackets the same, varying
the color of different bracket pairs, and including icons of
a square region with opposite corners emphasized (Fig. [3]).
Another common issue was selecting only one object from a
multi-object or region selector, rather than looping through
all objects. In D2, we tried to mitigate this issue by changing
the wording of the selectors to say “everything in this region”
and “these objects”. The other issues were due to alternative
interpretations of words used on action and selection blocks
(e.g., “select” interpreted as an action verb), as well as their
shape (e.g., arrow as direction). In D2, we tried to mitigate
these issues by updating the wordings; for instance, the term
“select” was removed from selection blocks and replaced with
referential phrases such as “this object” or “here.” To further
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Figure 7: Percentage of participants who responded
correctly to questions in the generalization test for
two executions (E1, E2) of six programs (P;-FPs); one
question for pick and one question for place/drop.
Three conditions are compared.

clarify the actions, we included icons of a gripper picking up
an object from the side versus top.

Overall the generalization test was more challenging and
it revealed additional confusions people had. To better un-
derstand challenges in the generalization test, we investi-
gated the particular questions that participants tended to
get wrong and examined the explanations of their answers.
Fig. |Z| shows participant’s correct responses in the gener-
alization test broken down into individual questions. The
most common issue we observed was in differentiating ob-
ject selectors from location/region selectors. We noted at
least one instance of confusion in this regard (verified by
participant’s explanation) in 90%, 83.3%, and 45% of par-
ticipants in D1PRE, D2PRE, and D1POST respectively.

For example, one question about P» (Table involved the
robot picking up the selected object from a different loca-
tion. This is consistent with the program; however, 50% of
participants in D1PRE deemed it inconsistent (Fig. Eka), Ps-
E1/E2). Further examination of their explanations revealed
flawed mental models of object selectors. For example, one
participant said “The object’s initial location does not seem
to be at all near to the indicated point, so the robot should
not grab this object.” Similarly, around 20% of participants
in D1PRE thought that the robot’s execution of P; picking
a different object at the selected location was inconsistent
with the program (Fig. [[a), Pi-E1/E2); e.g., “It violated
the picking instruction because it picked up a green cylinder
even though instruction #1 has an arrow with a command
“pick from side” pointing to a purple cylinder.” Nonetheless,
many participants gave correct answers backed by explana-
tions that demonstrate correct mental models; e.g., “The in-
struction specifies the object, which the robot finds and picks
up” (P2, object selector) and “Yes, the robot picks an item
from the correct location” (Py, location selector).

Our examination of participants’ responses identified ad-
ditional mental model flaws that contributed to wrong an-
swers. For example, P; included an object selector pointing



Error Description DIpRE D2pPRE DI1pPOST
Failure to associate paired brack- 65% 11.1% 0%
ets as opposite corners

Failure to loop over multiple ob- 60% 0% 30%
jects when picking from a region

or a set of objects

Misinterpretation of “side” and 35% 0% 0%
“top” not in relation to objects

Misinterpretation of the word 35% NA 0%
“select” as an action

Misinterpretation of arrow selec- 10% 16.7% 0%
tors as referring to a direction

Misinterpretation of icons NA 33.3% NA
Placement on all objects for the NA 16.7% NA
multi-object selector with the

words “these objects”

Misinterpretation of “anything NA 11.1% NA

here” as a reference to >1 object

Table 2: Different user errors in the demonstration
tests and percentage of participants who made the
error at least once. Note that numbers in the first
and third column are out of 20 (Study 1) and the
second column is out of 18 (Study 2) participants.

to a purple cup, with the drop action attached to it. In
an inconsistent execution, the robot dropped an object in a
green cup. Only 25% of the participants in D1PRE judged
this execution as inconsistent with P;; this went up to only
33% in D2PRE. Even after being explicitly instructed about
how the robot represents objects and how the object selector
matches all properties of objects in D1P0ST, around 50% of
participants still thought the robot’s action was consistent
with the program. The explanations of their answers re-
vealed that even though they had a correct mental model
of object selectors, they viewed the two cups as the same
objects, likely because of their common affordance in the
context of dropping. One participant said “The green cup is
clearly a close analogue for the purple cup, so I think drop-
ping into the green cup is perfectly reasonable.”

Fig. [§] shows participants’ responses to the Likert-scale
question asking how much their initial mental model of a
block matched its actual meaning after getting instructions
about blocks. We see that their perceived mental model dis-
crepancy is consistent with challenges observed prior to in-
structions. Actions were interpreted correctly by most par-
ticipants. People’s pre-instruction mental model of location
selectors were more likely to be correct than those of object
selectors. Also, the region and multiple object selectors were
more likely to be misinterpreted.

5.3 Challenges with Program Creation

Error Description

Failure to distinguish between object and location selectors
Misuse of object selectors without the selected objects
Missing ordering on brackets

Unattached ordering blocks in attempt to reuse selection
and action blocks in an earlier instruction

o oo ot |

Table 3: Different user errors in the program cre-
ation test (post instructions on D1) and the number
of participants (out of 20) who made that error.
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location

single object
region

multiple objects
pick from side
pick from top
drop

place

Figure 8: Responses to 5-point Likert-scale ques-
tions asking participants to rate how well their pre-
instruction mental model of different block types
matched their post-instruction mental model (1:
very different).

(@)

Figure 9: Alternative programs created by partici-
pants in the program creation task for Pg.

Table [3]summarizes challenges observed with program cre-
ation with D1. There were three errors that were observed
in at least 5 of 20 participants. The first was improper use
of object and location selectors, indicating the persistence
of mental model flaws observed in demonstration and gener-
alization tests. The second concerned improper placement
of object selectors. Some of these were byproducts of the
first type of error: participants who confused object and lo-
cation selectors did not realize objects must be present with
object selectors. Others assumed the robot could simulate
the effect of pick and place actions and they used the object
selector where the object should appear during the execu-
tion of the program (most common in task Pg). A program
created by a participant with this error is shown in Fig. Eka).
The third common error was missing numbering on one of
the brackets, which was required for distinguishing pairing of
brackets when more than one pair was used in the program.

Table [d] summarizes the common errors observed in pro-
gram creation test in Study 3 (using D2). We observe some
of the same issues. Once again, participants did not make
the distinction between object and location selectors. They
commonly used “this object” interchangeably with “anything
here” or “everything in this region” interchangeably with
“these objects”. Failing to number all brackets was also
common. We additionally observed unexpected combina-
tions of blocks. Two participants formed regions using addi-



Error Description

Failure to distinguish between object and location selectors
Missing ordering on brackets

Forming regions with >2 brackets (typically 4)
Combining arrows and bracket selectors

[ NN =

Table 4: Different errors in the program creation
test using D2 and the number of participants (out
of 6) who made that error.

tional brackets. Participants who incorrectly used additional
brackets attributed their choice to the icons on the brackets.
Two participants combined arrows with brackets to identify
where the arrow is pointing. They thought that arrows indi-
cate direction and that the bracket confines where the arrow
points.

Fig.[9]shows different programs created by participants for
the same task (Pg) using D1. The program in Fig. @(a) is
invalid as it places an object selector at a “future” location of
the object. This error was avoided in Fig. El(c), by attaching
the place action to the object selector at the object’s initial
pose. Programs in Fig. [9[b) and (c) have alternative inter-
pretations of the task description (e.g., the assembly being
at an exact location versus any point in a region), though
these could result in the top part not being placed on the
bottom part. This issue is avoided in Fig. [0{d) by using an
exact location selector for placing both objects.

5.4 Impact of the Design Iteration

As mentioned in Sec. participants performed signifi-
cantly better in D2PRE compared to D1PRE in demonstra-
tion tests (Fig. @ D2 appears to have successfully addressed
issues with associating the paired brackets, misinterpreta-
tion of phrases, and looping (Table . However, misinter-
pretation of arrows as direction indicators persisted with D2.
In addition, modified wordings and icons led to new confu-
sions, albeit much less common. In their explanations during
demonstrations, some participants noted matched coloring
of paired brackets and the icon helped them understand that
they represent a box together. Wordings on multi-object se-
lectors attached to pick actions also proved helpful, as many
participants commented they picked all objects in a loop
because it says “everything” or “these”. However, the same
wording was problematic when attached to place actions.
Some participants interpreted “these objects” as requiring
placement on all objects. Despite doing better on demon-
stration tests, participants still had issues in generalization
tests. Similar to D1, the dominant mental model flaw was
treating all selectors as location selectors.

5.5 Impact of Instructions

Participants did significantly better on both demonstra-
tion and generalization tests knowing the meaning of blocks
and how they form instructions. However, some issues re-
mained even after instructions. Around 10% of participants
still failed to loop over all objects when a pick action was
attached to a region selector in the demonstration tests.
In the generalization tests, mental model flaws associated
with object versus location/region selectors were not fully
addressed. In the program creation tests, instructions al-
lowed avoiding unexpected combinations of blocks, such as
using additional brackets or combining arrows and brackets.
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6. DISCUSSION

Our studies demonstrate that situated tangible program-
ming allows participants to program a robot with minimal or
no instruction. We cannot draw a direct comparison with in-
structions given to participants for other end-user robot pro-
gramming techniques in the literature; however, the ability
for participants to program the robot without any instruc-
tions is unique.

The intuitiveness of situated tangible programming comes
at the cost of expressiveness. Traditional text-based or
visual programming languages allow much more complex
boolean expression computations and flexible use of loops
and conditionals. Programming by Demonstration allows
defining new actions, whereas our approach is limited to
preprogrammed actions. Nonetheless, our implementation
captures many variations of pick and place tasks common in
industrial settings.

The expressiveness of situated tangible programming could
be increased by introducing additional blocks, such as cus-
tomizable conditionals and loops. However, designing dif-
ferent blocks to be intuitive is challenging, as demonstrated
in our studies. It is also possible to use situated tangible
programming in conjunction with other end-user program-
ming techniques. For instance, the user could define new
actions with Programming by Demonstration, assign them
to a block, and then use that block in a situated program.

Our studies involved programming without any system
feedback or testing. Other end-user programming techniques
often have development environments that aid the program-
ming and debugging process. Similarly, we envision our sys-
tem to provide feedback to users during programming. This
could involve visualization of robot’s perception, text repre-
sentation of a program, and intuitive compile errors.

The most common challenge observed in our study was
confusion between location and object selectors. This issue
persisted across three studies with both designs in program
comprehension and creation. This might have been because
the shape of the block was much more salient than the color
or text on it. Participants thought that the two selectors
were the same because they were both arrows. This suggests
semantically different blocks should have different shapes.

7. CONCLUSION

We introduce situated tangible programming: a new way
of programming robots by placing tangible “blocks” in the
robot’s workspace. Blocks allow annotating objects, loca-
tions, or regions in the environment and specifying actions
to be performed on them. We iteratively designed the blocks
and introduced a proof-of-concept implementation of the
system. Our evaluation shows that people can successfully
comprehend and create many programs, even without any
instructions. We demonstrate that design iterations can help
improve intuitiveness of blocks and that people can inter-
pret most programs correctly after minimal instructions. We
identify common mental model flaws that lead to misinter-
pretations or creation of wrong programs, and we suggest
possible improvements to address them.
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