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Not all frames are equal – selecting a subset of discriminative frames from a video can improve perfor-
mance at detecting and recognizing human interactions. In this paper we present models for categorizing
a video into one of a number of predefined interactions or for detecting these interactions in a long video
sequence. The models represent the interaction by a set of key temporal moments and the spatial struc-
tures they entail. For instance: two people approaching each other, then extending their hands before
engaging in a ‘‘handshaking’’ interaction. Learning the model parameters requires only weak supervision
in the form of an overall label for the interaction. Experimental results on the UT-Interaction and VIRAT
datasets verify the efficacy of these structured models for human interactions.
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1. Introduction

We propose representations for the detection and recognition of
interactions. We focus on surveillance video and analyze humans
interacting with each other or with vehicles. Examples of events
we examine include people embracing, shaking hands, or pushing
each other, as well as people getting into a vehicle or closing a
vehicle’s trunk.

Detecting and recognizing these complex human activities is
non-trivial. Successfully accomplishing these tasks requires robust
and discriminative activity representations to handle occlusion,
background clutter, and intra-class variation. While these chal-
lenges also exist in single person activity analysis, they are intensi-
fied for interactions. Furthermore, in surveillance applications,
where events tend to be rare occurrences in a long video, we must
have representations that can be used efficiently.

To address the above challenges, we represent an interaction by
first decomposing it into its constituent objects (human–human or
human–object), and then establishing a series of ‘‘key’’ compo-
nents based on them (Figs. 1 and 2). These key-components are
important spatio-temporal elements that are useful for discrimi-
nating interactions. They can be distinctive times in an interaction,
such as the period over which a person opens a vehicle door. We
specifically refer to such important temporal components as
key-segments. We further use key-pose to refer to a distinctive pose
taken by an individual person involved in an interaction. For
instance, a key-pose could be the outstretched arms of a person
performing a push.

Our models describe interactions in terms of ordered key-com-
ponents. They capture the temporal and spatial structures present
in an interaction, and use them to extract the most relevant
moments in a potentially long surveillance video. The spatio-tem-
poral locations of these components are inferred in a latent max-
margin structural model framework.

Context has proven effective for activity recognition. As
Marszalek et al. [28] observed, identifying the objects involved in
the context of an activity improves performance. A number of
approaches (e.g. [15,20,23,33]) examine the role of objects and
their affordances in providing context for learning to recognize
actions. Our approach builds on this line of work. We focus on
surveillance video, where events are rare, and beyond the presence
of contextual objects, spatio-temporal relations between the
humans/objects are of primary importance. We contribute a
key-component decomposition method that explicitly accounts
for the relations between the humans/objects involved in an inter-
action. Further, we show that this approach permits efficient
detection in a surveillance video, focusing inference on key times
and locations where human interactions are highly likely.

Moreover, our discrete key-component series capture informa-
tive cues of an interaction, and are consequently compact and
robust to noise and intra-class variation. They account for both
temporal ordering and dynamic spatial relations. For example,
we can account for spatial relationships between objects by simply
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Fig. 1. Schematics of the key-segment model for interaction detection. Key-segments, enclosed by magenta outline, identify the most representative parts of the interaction.
Spatial relations are captured through low-level features derived from distance and relative movement.

Fig. 2. Schematics of the key-pose model for interaction recognition. An interaction is represented by a series of key-poses (enclosed by red or blue bounding boxes)
associated with the discriminative frames of the interaction. Spatial distance, marked by yellow double-headed arrows, is explicitly modeled over time. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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characterizing their distance statistics. Alternatively, we can
directly model the dynamics of relative distance over time in the
video sequence.

Structured models of interactions can be computationally
intensive. Our key-component model allows efficient candidate
generation and scoring by first detecting the relevant objects,
and then picking the pairs that are likely to contain an interaction.

We emphasize the importance of leveraging different structural
information for effective interaction representation. In contrast, a
common approach is to aggregate appearance and motion cues
across the whole interaction track, ignoring potentially informative
temporal and spatial relations [40,30]. While these globally con-
structed representations can successfully distinguish a person
jumping vs. a person walking, they are too simple to differentiate
a person merely passing by a vehicle vs. a person getting in/out
of it. The two share very similar appearance and motion patterns
and a clear distinction becomes possible with the help of structural
considerations (e.g. relative object distance and movements).

This paper extends our previous work [43]. We conduct extended
experiments on efficient interaction detection and recognition, con-
firming the advantages of both object decomposition [43] and mod-
eling of the temporal progression of key-components [29,35] that
are spatially related [43]. More specifically our contributions are:
(1) efficient localization of objects involved in an interaction while
accounting for interaction-specific motion and appearance cues
and (2) modeling of chronologically ordered key-components in a
max-margin framework that explicitly or implicitly incorporates
objects’ relative distance and/or movements.

An overview of this paper is as follows. We review the related
literature in Section 2. We then outline our approach to interaction
representation in Section 3 and subsequently provide a detailed
description of our models for detection (Section 4) and recognition
(Section 6). We present empirical evaluation on the efficacy of the
proposed representations for each task separately in Sections 5 and
7. We conclude and highlight possible future directions in
Section 8.
2. Background

Activity understanding is a well-studied area of computer
vision. To situate our research on detecting and recognizing inter-
actions, we first clarify the distinction between these two tasks.
We then highlight major trends in handling activity structures. A
more comprehensive review of the literature on activity under-
standing in computer vision can be found in recent survey papers
[48,1,34].
2.1. Detection vs. recognition

In a recognition problem, the goal is to determine the type of an
activity contained in an input video. That is, we implicitly assume
something happens in the video. On the other hand, in detection
we are concerned with finding the temporal and spatial location
of an activity – crucially, with no prior knowledge on whether or
not the input video contains an activity. The detection problem is
thus inherently more challenging and computationally demanding
as we should both classify the activities vs. non-activities, and
specify when and where they occur. A feasible solution requires
an efficient initial screening to narrow down the search space. It
is common to use techniques such as background subtraction to
segment regions of video where objects are moving. An activity
model is then applied to these regions in a sliding window fashion
[17,4]. The main limitation of this approach is that the seg-
mentation is not informed by knowledge about the activities we
are searching for. Consequently, in the crowded scenes typically
encountered in realistic video footage, we end up searching
through many irrelevant regions. In our work on interaction
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detection, we instead identify regions that contain people and
objects within a reasonable distance, and only search through
these areas where it is highly likely for interactions to occur.

2.2. Structures in activity representation

A differentiating aspect in approaches to activity understanding
is the incorporation of structural representations. There are two
major questions to guide our classification of the literature: what
sort of structures are deemed relevant, and how they are included
in the representation. In the following subsections we review the
four most significant classes of approach to modeling structures
for detecting/recognizing activities.

2.2.1. No structure
Typically, local low level features of appearance and/or motion

over the entire video volume are aggregated in a histogram repre-
sentation. Therefore, neither temporal nor spatial structure is con-
sidered. For example, Schüldt et al. [40] extract motion patterns
corresponding to ‘‘primitive events’’ and capture their relevant
appearance and motion information as spatio-temporal jets. They
cluster these local descriptors to construct a vocabulary of the
primitive elements, which is then used to obtain Bag-of-Words
(BoW) representations of videos. Similarly, Niebles et al. [30] iden-
tify spatially discriminative regions that undergo complex motions
and characterize the regions with a gradient descriptor. They
represent a video sequence as a collection of words of a vocabulary
constructed based on these descriptors. The expressiveness of
these BoW representations is limited as they discard potentially
discriminative structural information.

2.2.2. Spatial structure
Similar to part-based object representations in still images, the

spatial configuration of ‘‘parts’’ can be modeled on top of low level
appearance and/or motion features. Wang and Mori [47] propose a
frame level hidden part model based on local motion features. They
process a video sequence frame-by-frame using their model and
carry out majority voting to identify the video content. Tian et al.
[42] developed a deformable part model that organizes discrim-
inative parts over time based on their local appearance and motion
captured by HOG3D features [21]. Although capturing spatial
structure is sufficient for distinguishing activities consisting of
parts with considerably different appearance, it fails to differ-
entiate patterns with similar parts in different temporal order.

2.2.3. Temporal structure
2.2.3.1. Sequential. The temporal progression of an activity can be
captured by a series of hidden states inferred from appearance
and/or motion observations. For example, Yamato et al. [50]
develop a Hidden Markov Model (HMM) of an activity that
observes a sequence of appearance symbols over the video frames.
Once tuned to a particular type of activity, the model assigns
higher probabilities to a sequence of symbols that more closely
match the learned activity. Lv and Nevatia [27] perform key pose
matching with sequence alignment via Viterbi decoding. Tang
et al. [41] extend HMMs to also model the duration of each state
in the temporal evolution of activities. These models are robust
to time shifts as well as time variance in the execution of activities.
However, they lack information about the spatial structure. This
spatial structure can be crucial for making decisions, for example
understanding whether a motion comes from the upper or lower
body, or whether two parts meet or miss each other in a relative
motion.

2.2.3.2. Local feature. Efforts have been made to enhance local fea-
ture methods by including spatio-temporal structural relations.
Ryoo and Aggarwal [38] develop a kernel for comparing spatio-
temporal relationships between local features and show effective
classification in an SVM framework. Kovashka and Grauman [24]
consider higher-order relations between visual words, discrim-
inatively selecting important spatial arrangements. Yao et al. [51]
utilize a local feature-based voting procedure to recognize actions.
Yu et al. [52] propose an efficient recognition procedure using local
features in a spatio-temporal kernelized forest classifier.
2.2.3.3. Exemplar. The temporal composition of an activity can be
characterized by a series of templates on top of low level features.
The template series are sometimes very rigid with little provision
for variation in the length of an activity. For example, Efros et al.
[11] construct a motion descriptor on every frame of a stabilized
track and compute its cross-correlation matching score with sam-
ples of an activity database. The best matched sample represents
the content of the track. Brendel and Todorovic [4] propose a more
flexible model that builds exemplars by tracking regions with dis-
criminative appearance and motion patterns. A general limitation
of the exemplar models of temporal content is their insufficient
generalization to samples that are not close enough to any of the
templates.
2.2.3.4. Key-component. An activity can be represented as a discrete
sequence of discriminative components based on appearance and/or
motion features. Niebles et al. [29] identify a sequence of key
components that are based on pooled HOG [7] and HOF [8] features
at interest points. Raptis and Sigal [35] develop an even more com-
pact representation by modeling frame level key poses that are
automatically constructed as a collection of poselets. These models
are highly robust to noise and intra-class variations. However, they
do not exploit important discriminative spatial relations that are
particularly relevant to interactions.
2.2.4. Temporal and spatial
Leveraging both the temporal and spatial composition of activi-

ties gives models additional expressive power. Intille and Bobick
[16] manually identify ‘‘atomic’’ elements of an activity and specify
temporal and spatial relations among them to represent activities,
such as a football play, that involve several people interacting with
each other. Vahdat et al. [43] present a key-pose sequence model
that automatically determines the informative body poses of peo-
ple participating in an interaction while accounting for the tem-
poral ordering of poses as well as their spatial relations and the
roles people assume in the interaction. Methods have been devel-
oped that model sophisticated spatio-temporal relations between
multiple actors/objects in a scene [2,6,25,18]. In this paper we
instead focus on models capturing detailed information about a
pair of objects interacting in surveillance environments that lack
the strong scene-context relationships that provide much of the
benefit for the multi-actor models.
3. Analyzing human interactions

Given a surveillance video, our goal is to automatically detect/
recognize activities that involve people interacting with objects
or with other people. The overall flow of our approach is to first
detect and track objects (people and/or vehicles). We then deter-
mine which object pairs are likely involved in an interaction. We
apply more detailed models to these pairs to find interactions.
The initial screening enhances the overall efficiency as it con-
siderably diminishes the search space. We develop methods for
analyzing key-segments and key-poses within these pairs of tracks.
Depending on the level of visual detail and interaction category



Y.S. Sefidgar et al. / Computer Vision and Image Understanding 135 (2015) 16–30 19
granularity, the key-segment or more detailed key-pose model can
be deployed.

An important aspect of our model is the selection of discrim-
inative parts of a track. Given tracks of people and objects, we
model their interaction as a series of locally discriminative compo-
nents. We consider these components as latent variables in our
model and infer them based on objects’ appearance and their
interrelations.

More specifically, we note that the objects involved in an inter-
action have discriminative relative distance and movement pat-
terns. For example, two people’s spatial distance when shaking
hands is different from their proximity when hugging each other.
Similarly, a person interacting with an object, such as a vehicle,
is close enough to reach the object – a condition not necessarily
true when there is no interaction going on (Figs. 3 and 4).
Moreover, people’s movements with respect to an object are rele-
vant. When a person gets into a car, her/his movements are toward
the vehicle, while getting out of a car largely involves movements
away from it (Fig. 5). In subsequent sections we provide the details
of our feature representations.

In the most naive approach, it is possible to feed appearance
and relative distance/movement features pooled over an entire
interaction track into a classifier (e.g. an SVM). However, this con-
founds relevant and irrelevant features of the track. Additionally,
almost all informative structural information is washed out in this
global representation. Instead, we leverage spatial and temporal
structures and represent an interaction in terms of its most dis-
criminative parts. By incorporating the most pertinent information,
our representation can handle intra-class variation due to differ-
ences in the execution of the same interaction. For example, it is
sufficient to find two nearby people with arms first alongside their
bodies at one point in time and then concurrently extended toward
each other at another point to reliably identify that they are
shaking hands. Neither occlusion/clutter present at any other
point, nor the time duration of reaching the other’s hand and
shaking it impacts this representation.

We introduce two such representations in Sections 4 and 6.
Briefly, we develop a key-segment model for interaction detection
and key-pose model for interaction recognition. Following the
insight explained above, both models look for ‘‘key’’ temporal
and spatial structural components. In dealing with the challenging
task of interaction detection in long videos, the key-segment model
finds the temporally discriminative sequences of frames, the
key-segments, in a video over time. On the other hand, the more
complex key-pose representation explicitly specifies how objects
(a) Shaking hands

Fig. 3. People’s relative distance changes depending on the type of interaction they
are located in time and space in a given track containing a type
of interaction. Its enhanced expressive power thus allows it to tell
different interactions apart.
4. Interaction detection: key-segment model

Our approach to interaction detection consists of two major
steps (Fig. 6). We first coarsely localize objects, in time and space,
using off-the-shelf detection and tracking methods. We then use a
discriminative max-margin key-segment model to more closely
examine if a particular set of objects contains an interaction of
interest. The timings of the most informative parts of an interac-
tion track, the key-segments, are considered as latent variables in
our model. The model therefore encodes the most relevant appear-
ance features and spatial relations in a temporal context. With this
two-stage approach we can efficiently process large volumes of
video to narrow our search, expending more expensive com-
putations only on a subset that is likely to contain an interaction.
This advantage is particularly of interest in surveillance applica-
tions where very few interactions happen in a long stream of video.
In the following subsections we describe the above steps in more
detail.
4.1. Coarse localization

We use available object detectors to obtain bounding boxes of
objects at the rate of three frames per second. We set the detection
threshold low to ensure as few potential candidate interactions as
possible are lost; there is no way to find an interaction past this
stage if one of the objects involved in it is not retrieved. This comes
at the cost of a larger false positive rate which we mitigate by fil-
tering out detections that are unreasonably large and fall in a
region where interactions are less likely to occur. We assume
access to scene homography and regions of interest that are typi-
cally available in surveillance applications. However, automatic
discovery of such regions in a given setup is possible as demon-
strated in [49].

We use the above object detections to initialize a tracker that
follows the object for a fixed duration forward and backward in
time. The length of a track, L, is set to be at least twice as long as
the average length of an interaction. The tracks centered at the ini-
tial detections provide a coarse localization of objects for further
analysis where we build potential interaction tracks, the so called
candidates, by pairing the object tracks.
(b) Hugging

participate in. People hugging each other are closer than people shaking hands.



(a) No interaction (b) Getting into a vehicle

Fig. 4. People are close enough to reach the objects they are interacting with.

(a) Getting out of a vehicle

(b) Getting into a vehicle

Fig. 5. Relative movements of people and objects can distinguish between different interactions.

Fig. 6. Overview of interaction detection system. There are two major steps: (1) we
efficiently but coarsely localize potential interactions in time and space and (2) we
more closely examine the content of these space–time volumes to determine if they
contain interactions.
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4.2. Key-segment model formulation

When analyzing a track of a person nearby a vehicle, we can not
only use a global description of the entire track, but also focus our
attention on specific time instances. For example, important key-
segments can include frames portraying the person first bent
within the door frame and then moving away from the vehicle.
Together with global descriptions of the tracks, these can lead us
to infer that the person is getting out of the vehicle. Our key-seg-
ment model formalizes this (Fig. 7). We treat the temporal location
of the important portions of an interaction track, the key-seg-
ments, as latent variables and infer their timing by evaluating all
the possible ordered arrangements of the segments: we assign
each arrangement a score and pick the one with the highest score
as representative of the interaction. For a (tentatively) localized
track C and an arrangement of its K segments
S ¼ si < siþ1; i ¼ 1;2; . . . ;K � 1f g, we define the following scoring
function to evaluate the arrangement:

f W ;Wg
ðC; SÞ ¼

XK

i¼1

wT
i /ðC; siÞ þWT

g/gðCÞ; ð1Þ

where the model parameters W ¼ ½w1;w2; . . . ;wK � and Wg are
adjusted such that the more representative the segment arrange-
ment within the track, the higher the score it is assigned. Feature
functions /ð�; �Þ and /gð�Þ encode the relevant spatio-temporal infor-
mation across each segment and entire track respectively. In our
work, we use appearance features and spatial dynamics: densely
sampled HOG3D, center-to-center Euclidean distance of object
bounding boxes, and the inner angle of the relative object move-
ment vectors. A detailed description of the features appears below.

Given the above scoring scheme, the arrangement of key-seg-
ments within a track is:

S� ¼ arg max
S2U

f W;Wg
ðC; SÞ; ð2Þ

where U is the set of all possible arrangements of segments in C. In
the present work, we only considered segments of fixed length l.



Fig. 7. Graphical representation of key-segment model. We score S ¼ si < siþ1; i ¼ 1;2; . . . ;K � 1f g, the arrangement of segments shaded in gray, on a (tentatively) localized
track C. The model parameters W ¼ ½w1;w2; . . . ;wK � and Wg are adjusted such that the score f W ;Wg

ðC; SÞ is maximized for the arrangement of key-segments.
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Therefore, the ith segment spans a window at frames ½si; si þ l� 1� of
the track.

4.3. Features

To capture the appearance, motion, and spatial relations of
interacting people and vehicles we use HOG3D, distance, and joint
direction and distance features. These are computed as follows.

4.3.1. HOG3D
We construct the HOG3D representation of a human–vehicle

interaction by concatenating HOG3D features [21] of the human
and the vehicle participating in the interaction. We densely sample
the regions of video spanned by the human/vehicle bounding
boxes in time and space and construct a BoW histogram represen-
tation of an entire object track (global representation), or segments
of it (Fig. 8a). The X (horizontal) and Y (vertical) stride width of
dense sampling are equal and scene-dependent. They are set such
that at least four horizontal and vertical strides cover a bounding
box. Overlapping temporal strides have a width of 10 frames and
cover each other by five frames. The histograms of the human
and vehicle each have 1000 bins associated with visual words,
obtained from K-Means clustering [12] of densely sampled
HOG3D features of ground truth object tracks. Both human and
vehicle BoW features are normalized so their L1 norm is 1. A
kd-tree structure by [44] speeds up visual word look-up when
constructing the histograms.

4.3.2. Distance
For a pair of human and vehicle bounding boxes on a given

frame we compute the Euclidean distance between their centers
in world coordinates using homography information (Fig. 8b).
We then pool the distance measurements over the entire
(a) HOG3D (b) Distan

Fig. 8. The construction of appearance as well as the relative distance and direction fea
temporal strides for HOG3D feature extraction.
interaction track or segments of it to construct a four-bin his-
togram. The bins are associated with very close, close, far, and very
far distance values, quantified by clustering the measurements on
ground truth interaction tracks. We use the soft-assignment
scheme of [32] to construct the histograms and carry out L1-nor-
malization to get the final distance feature vector.

4.3.3. Joint direction and distance
The angle between the person motion vector and the vector

connecting the centers of the person and vehicle bounding boxes
is indicative of the person’s movements with respect to the vehicle
(Fig. 8c). If a person is about to interact with a vehicle, s/he is likely
moving toward the vehicle and not away from it. However, several
back and forth movements may occur during the interaction. To
capture this, we jointly construct a direction and distance his-
togram with four bins for each quantity (a total of 4 � 4 = 16 bins).
The direction bins are [�90�, 11.25�, 90�, 168.75�] and encode no
motion, moving toward, moving along, and moving away from
the vehicle. We use the distance bins quantified above for com-
putations. As before, we perform soft-assignment and L1-normal-
ization to construct the feature vector.

4.4. Learning

We adjust the model parameters in the SVM framework by
solving the following constrained optimization problem for N
training tracks C1;C2; . . . ;CNf g labeled y1; y2; . . . ; yNf g respectively
where yi 2 1;�1f g; we do not have annotations for key-segments
and infer their value during the training:

min
W;Wg;ni

k
2
ðWT W þWT

g WgÞ þ
XN

i¼1

ni;

s:t: 8i yi max
S2U

f W;Wg
ðCi; SÞP 1� ni; ni P 0: ð3Þ
ce (c) Joint direction and
distance

tures on the VIRAT dataset [31]. DX, DY , and DT in (a) are the width of spatial and
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Combining the two constraints of Eq. (3) into one as

ni P max 0;1� yi maxS2U f W ;Wg
ðCi; SÞ

n o
, we can write:

min
W;Wg;ni

k
2

WT W þWT
g Wg

� �
þ
XN

i¼1

max 0;1� yi max
S2U

f W;Wg
ðCi; SÞ

� �
: ð4Þ

In general, the objective function in Eq. (4) is non-convex.
However, it is always convex for the negative samples and convex
for the positive ones given a fixed assignment of the latent vari-
ables. Therefore, it is possible to iteratively optimize the objective
by first inferring the latent variable for a set of parameters, and
then optimizing the parameters once the variables are inferred as
in [14].

We use the discriminative pre-training trick to simplify the
optimization and initialize model parameters to those of an SVM
model [9]. We use the NRBM optimization package [10] to solve
Eq. (4).
4.5. Inference

For track C and interaction model parameters ðW;WgÞ we
would like to find a strictly increasing assignment for latent vari-
ables S� ¼ si < siþ1; i ¼ 1;2; . . . ;K � 1f g that has the maximum
score f W ;Wg

ðC; SÞ among all the possible assignments S. Given the
ordering constraint, we can formulate the inference as a dynamic
programming problem.

We define Fðm; tÞ to be the optimal value of f W;Wg
ðC; bSÞ wherebS ¼ si < siþ1; i ¼ 1;2; . . . ;m� 1f g and sm is located on the tth frame

(m 6 K and t 6 L). We can subsequently define the following recur-
sive relations:

Fð1; tÞ ¼ wT
1/ðC; tÞ; ð5Þ

Fðm; tÞ ¼ max
m�16j<t

Fðm� 1; jÞ þwT
m/ðC; tÞ

� �
: ð6Þ

The best assignment score is given by maxK6t<LFðK; tÞ and S� can
be retrieved by backtracking. The time complexity of this process is
OðKLÞ, i.e. linear in track length L for a fixed choice of K.
5. Evaluation of key-segment model

We evaluate the key-segment model for interaction detection
on the VIRAT Ground Dataset Release 2.0 [31]. VIRAT contains var-
ied interactions in relatively longer videos of wide scenes and is
therefore appropriate for detection performance analysis. In the
following subsections we describe the data, features, and the
experimental setup in detail.
Table 1
Statistics of VIRAT Ground Dataset Release 2.0 data. Training scenes are marked by � . Intera
objects files and visually inspecting the tracks to verify their content. Background samples
randomly picked a subset of size 295 out of these pairs for our experiments.

Scene # 0000 0001 0002 0101⁄ 010

Number of videos 5 2 39 46 76
Length of videos (h) 0.8 0.46 1.42 0.74 1
(1) Loading objects 2 0 1 0 0
(2) Unloading objects 8 4 3 0 0
(3) Opening trunk 8 2 8 6 0
(4) Closing trunk 9 2 8 6 0
(5) Getting in 16 3 21 9 1
(6) Getting out 14 4 33 0 0
All Interactions 57 15 74 21 1
Background 0 1 22 75 11
5.1. VIRAT Ground Release 2.0

The dataset contains 8.61 h of high-definition fixed-camera
surveillance videos portraying people naturally performing activi-
ties in real environments (e.g. parking lots, construction sites,
walkways). There is a total of 11 scenes that significantly vary in
terms of lighting condition, camera viewpoint, and human height
in pixels. Detailed annotations are available at both event and
object levels for 12 different activities, including six human–vehi-
cle interactions: loading/unloading an object to/from a vehicle,
opening/closing a vehicle’s trunk, getting in/out of a vehicle.
Instances of these events occur in a wide spatial range and are tem-
porally scattered. The official release documentation [19] identifies
two training–testing schemes: (1) scene-independent: training is
carried out on a subset of scenes while testing happens on another
mutually exclusive subset. (2) scene-dependent: training and test-
ing samples come from the same set of scenes and thus scene-
specific regularities learned during training are helpful at the test
time.

We use videos in 10 (out of 11) scenes that are relevant to the
task of human–vehicle interaction detection (Fig. 18—the only
scene we dropped (0100) captures a building facility where no
interaction of interest can occur. We follow a scene-independent
setting for evaluations [19], and to the best of our knowledge there
are not comparable previously published results that use the same
setting. Zhu et al. [54] achieve state-of-the-art results on a subset
of the dataset in the scene-dependent setup, but comparison is dif-
ficult without the details of the experimental setup and feature
computation. In the experiments reported here, the training scenes
are 0101, 0400, 0401, 0502 and comprise 3.43 h of video. There are
a total of 167 correctly annotated interactions in these scenes
(Table 1).

5.2. Experiments

Next, we describe the experiments we conducted to verify our
choice of features and to evaluate the efficacy of our proposed
interaction localization and representation.

5.2.1. Evaluation of features
We start by using the ground truth tracks from the dataset to

evaluate if the proposed features adequately capture the relevant
information for detecting interactions. We acknowledge that the
features we evaluate in this error-reduced setting may not be ideal
in other more realistic settings (e.g. that of 5.2.2), and emphasize
that our concern here is how well these features capture the
underlying patterns of an interaction.

We construct global BoW representations of HOG3D,
HOG3D + Distance, and HOG3D + Distance + joint Direction and
Distance features to represent ground truth tracks. We use
ction samples have been obtained by cross referencing valid entries of mapping files in
are pairs of spatially close people and vehicles not involved in an interaction. We have

2 0400⁄ 0401⁄ 0500 0502⁄ 0503 total

28 17 14 30 14 329
1.29 0.54 0.24 0.86 0.4 7.75
6 5 0 3 0 17
19 18 2 4 0 58
9 3 0 3 0 39
7 2 0 3 0 37
9 3 1 25 6 94
6 6 1 15 2 81
56 37 4 53 8 326
31 36 32 3 84 295
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approximate Histogram Intersection kernel expansion [45] and
train a linear SVM model on the expanded features. Any instance
of the six interaction classes is considered a positive sample.
Pairs of humans and vehicles that do not interact but are spatially
close to each other are considered as negative samples. We com-
piled 145 such pairs for training (see Table 1).

Fig. 9 depicts the precision–recall performance of each model,
illustrating the importance of features capturing the inter-relations
of objects. While all three feature settings perform better than
chance, the inclusion of distance features dramatically improves
the performance. The overlapping information that joint direction
and distance features bring provides additional discriminative
power. See Table 2 for a summary of quantitative measurements.

5.2.2. Key-segment model for detection
We examine our key-segment interaction model in two differ-

ent settings. We first show the effectiveness of considering more
discriminative segments of an interaction track by comparing the
key-segment model against a global BoW + SVM model on ground
truth interaction tracks. We then detect interactions based on
automatically generated tracks.

5.2.2.1. Ideal Interaction Tracks. We use the best performing feature
representation of 5.2.1 (i.e. HOG3D + Distance + joint Direction
and Distance) within the training-test split summarized in
Table 1. We train both global BoW + SVM and key-segment models
Fig. 9. Feature evaluation experiments on VIRAT Ground Release 2.0: Precision–
recall curves of models trained on appearance (HOG3D), appearance and relative
distance (HOG3D + dist), and appearance and relative distance and direction
(HOG3D + Dist + DDir) features in red, blue, and green respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Results of interaction detection on VIRAT Ground Release 2.0. AUC: area under
precision–recall curve, AP: average precision. HOG3D: appearance feature, Dist:
distance feature, DDir: joint direction and distance feature. The bold values denote
the best results in each column.

Model AUC (%) AP (%)

Trained and tested on ground truth tracks
HOG3D BoW + SVM 80.16 80.57
HOG3D + Dist BoW + SVM 90.88 90.92
HOG3D + Dist + DDir BoW + SVM 91.37 91.40
HOG3D + Dist + DDir + key-seg 93.01 93.03

Automatically generated tracks
HOG3D + Dist + DDir BoW + SVM 5.97 6.63
HOG3D + Dist + DDir key-seg 23.36 23.78
and compare their scores. The key-segment model in the following
experiments works with a single latent variable (K ¼ 1) and seg-
ment length of 20 frames (l ¼ 20). As demonstrated in Fig. 10,
the key-segment model significantly improves detection perfor-
mance, confirming the insight that examining more discriminative
portions of a track is helpful. While the global BoW + SVM model
uses the same features, it does not pick the most relevant informa-
tion; it considers both relevant and irrelevant cues. However, the
key-segment model selects the most informative signals to score
a track.
5.2.2.2. Automatically generated interaction tracks. We use human
and vehicle detectors Felzenszwalb et al. [14] trained on the
PASCAL VOC2009 dataset and tune them to VIRAT by additionally
training a kernelized SVM classifier based on HOG3D BoW features
densely sampled in detection bounding boxes. We filter out low
scoring detections from further analysis. We use [5] to train the
SVM classifier.

We use the human detections to initialize the MIL tracker
Babenko et al. [3] developed and track them in a time window
spanning 200 frames before and after the detection frame (i.e.
L ¼ 2� 200 ¼ 400). We do not explicitly track vehicle detections.
Since in these human–vehicle interactions the vehicle does not
move, we copy the vehicle detection in its place to get its track.

Any pair of coarsely localized human and vehicle tracks that are
close enough to each other in time and space is a candidate inter-
action. We use interaction models trained on ground truth data
(i.e. the two models from 5.2.2) and score how well these candi-
dates represent an interaction. Following [19]’s evaluation metho-
dology, we consider candidates whose temporal and spatial
intersection over union overlap with a ground truth sample is lar-
ger than 10% as a correct detection.

In Fig. 11, we report the performance of the scheme described
above for videos in scenes 0000 and 0001, where the height of
the humans in the scene is large enough for the detection models
Fig. 10. Interaction detection experiment on ideal tracks of VIRAT Ground Release
2.0: Precision–recall curves of BoW + SVM (red) and key-segment (blue) models
both trained on appearance and relative distance and direction
(HOG3D + Dist + DDir) features extracted from ground truth person and vehicle
tracks. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)



Fig. 11. Interaction detection experiment on automatically generated tracks in
VIRAT Ground Release 2.0: Precision–recall curves of BoW + SVM (red) and key-
segment (blue) models applied to automatically generated tracks of people and
vehicles based on their appearance & relative distance & direction
(HOG3D + Dist + DDir) features. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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to work reasonably well. Fig. 12 shows sample key-segment model
outputs.

Analysis. The key-segment model significantly outperforms the
global BoW model by incorporating structural information. A com-
parison of key-segment and global BoW performance in the two
evaluation settings, one involving ground truth tracks and the
other involving automatically generated tracks, reveals the impor-
tance of selecting the most informative cues. For ground-truth
tracks, the key-segment model achieves �2% additional
(a) rank = 1, label = 1, the top scored true positive. The

(b) rank = 4, label = -1, the top scored false positive. The pe

(c) rank = 5, label = 1. The person g

(d) rank = 8, label = -1. The person moves toward the vehicle a

Fig. 12. Top scored samples of VIRAT Ground Release 2.0. We show a subset of frames th
respectively. They are enclosed by a magenta box on frames of the inferred key-segment.
to colour in this figure legend, the reader is referred to the web version of this article.)
improvement over global BoW; for automated tracks it increases
average precision by �17%.

Inspecting the top scored samples, we see that the key-segment
model usually favors the moments when the person makes a move
with respect to the vehicle; a reasonable cue of an imminent inter-
action. Additionally examining the top ranked false positives
reveals some of the difficulties in working within the limited set-
tings that VIRAT dataset offers. For example, Fig. 12b displays a
person moving toward the vehicle and bending over the window.
Such an event can be considered as an interaction, although it is
not specified as one and so there is no label for it. Also, there are
lost interactions as in Fig. 12d, where the annotations are not avail-
able for an occurrence of the already defined interaction.

The performance is heavily dependent on the quality of the
interaction tracks built on top of the object tracks. Developing
robust detection and tracking for the diverse VIRAT videos is a
challenge, and we are not aware of published results with effective
methods (e.g. based on moving region detection or person/vehicle
detectors) that are effective. However, our results on ground-truth
tracks show that the features and model we propose are effective.
We provide evidence that with improved detection and tracking
modules, the overall system could obtain results closer to average
precision of 93.03% obtained by ground-truth tracking. Further,
more detailed models with K > 1 can be applied in finer-grained
settings with more reliable detection and tracking. In the next sec-
tion we explore more detailed models in the context of human–hu-
man interactions.

6. Interaction recognition: key-pose model

In our approach to recognizing human interactions, we are
looking for descriptive and infrequent moments in (tentative)
tracks of people. To this end, we use a discriminative max-margin
person moves toward the vehicle and opens the trunk.

rson moves toward the vehicle and bends over the window

ets into the vehicle and disappears.

nd gets into it. The annotations were missing for this sample.

at best exemplify the output. Person and vehicle bounding boxes are in red and blue
The figure is best viewed magnified and in color. (For interpretation of the references



Fig. 13. Graphical representation of key-pose model. We score the key-pose series

H1 ¼ h1
1; h

1
2; . . . ; h1

K

h i
and H2 ¼ h2

1; h
2
2; . . . ; h2

K

h i
for tentative tracks of people C1 and C2.

A h j
i is a key-pose identified by its role, timing, location, and appearance. A temporal

order constraint is enforced among key-poses in each sequence. The lines with circle
(dark green), diamond (red), cross (blue), and square (magenta) shapes on them
represent the potential functions: exemplar match, activity-key-pose match, image
appearance match, and distance respectively. The model parameters Ws;Wo;Wd are

adjusted such that the score f Ws ;Wo ;Wd
ðC1;C2; y;H1;H2Þ is maximized for the

combination of key-poses that best represent the interaction. For example, a person
in an offensive pose with one hand extended and another bent in a defensive pose are
representative of a punching interaction. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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key-pose model to identify the most informative frames of person
tracks, the so-called key-poses. We characterize the key poses by
their role, timing, location, and appearance. This information is
encoded as latent variables in our model. Moreover, we account
for the spatial arrangements of the key-poses over time. Our model
thus considers the relevant frames of a track only and ignores the
misleading and highly variable ones. Its expressive power is also
improved by explicitly encoding the spatial structure of people
participating in the interaction. In the following section we for-
mally describe the key-pose model for human–human interaction
recognition.

6.1. Model formulation

Observing two people, one approaching the other with his
hand extended in an offensive pose and the other defensively
stepping back shortly after, leads us to infer that an aggressive
act, for instance one person punching another, is taking place.
We formalize this with our key-pose model. Given a pair of per-
son tracks we represent their interaction by two series of chrono-
logically ordered inter-related key-poses (one for the subject and
the other for the object of the interaction) that are discriminative
in appearance and spatial structure. We consider as latent vari-
ables the role (subject vs. object), timing, location, and specifics
of appearance of these key-poses, and infer them by evaluating
all the valid combinations of these variables. The evaluation is
based on a score we assign to a set of values for latent variables
and quantifies how well it encodes the underlying interaction;
the highest scored combination represents the interaction.
Below, we describe these variables and our scoring function in
more detail.

6.1.1. Latent variables
A key-pose is identified by its role, timing, location, and appear-

ance to capture the following information:

� Role (r): whether the sequence containing the key-pose is the
subject or the object of the interaction.
� Timing (t): when in a tentative track of the person the key-pose

occurs. Chronological order is enforced among key-poses of a
sequence.
� Location (s): where in the space around the tentative track of

the person the key-pose is located. That is, s varies in a vicinity
of a tracker’s output that roughly estimates where people are in
a video and allows us to handle modest tracking errors.
� Appearance (e): how the key-pose looks. For example, does it

look like a punch in the face or a punch in the armpit? e is
selected from a discrete set of exemplars, E, containing possible
appearance variants of key-poses. We separately construct E;
see 7.2 for details.

Formally, we aggregate this information in a single variable
h ¼ ½r; t; s; e�. We can thus encode a sequence of K key-poses by
H ¼ ½h1;h2; . . . ;hK � where hi is the ith key-pose. ri’s take a single
value in all the key-poses of one sequence, i.e. 8i; ri ¼ r1 and r1 is
either subject or object. In the present work, we assume there is
a fixed number of key-poses in any sequence.

6.1.2. Scoring function

For tentative tracks C1 and C2 of two people and an arrange-
ment of their key-poses H1 and H2 we define the following scoring
function:

f Ws ;Wo ;Wd
ðC1;C2; y;H1;H2Þ ¼ PWðr1

1
ÞðC

1; y;H1Þ þ PWðr2
1
ÞðC

2; y;H2Þ

þ QWd
ðC1;C2; y;H1;H2Þ; ð7Þ
to evaluate how representative the key-pose series are for an activ-
ity labeled y. Function P scores the compatibility between the activ-
ity label and the appearance of the key-poses as well as their
temporal order. Wð�Þ equals Ws if the sequence takes the subject
role, and equals Wo if it takes the object role. We thus account for
the asymmetry in many interactions by explicitly modeling each
role. Function Q examines the relative spatial distance between
the key-poses of one track from the other track, and whether the
distance pattern is compatible with the underlying interaction.
Formally, we define P and Q as follows:

PWðC; y;HÞ ¼
XK

i¼1

aTU0ðC; ti; si; eiÞ þ
XK

i¼1

bT
i U1ðy; eiÞ

þ
XK

i¼1

cTU2ðC; y; ti; siÞ: ð8Þ

The three terms in the above formulation are graphically illus-
trated in Fig. 13 by links associated with potential functions
U0;U1, and U2 respectively. They represent:
6.1.2.1. Exemplar matching link. aTU0ðC; ti; si; eiÞ measures the com-
patibility between exemplar ei and the image evidence at time ti

and location si. It is defined as:

aTU0ðC; ti; si; eiÞ ¼
XjEj
j¼1

aT
j Dð/ðC; ti; siÞ;/ðeiÞÞ1fei¼jth element of Eg: ð9Þ

/ðC; ti; siÞ encodes appearance features at time ti and location si of
track C. /ðeiÞ captures similar information in exemplar ei. In our
work we densely sample HOG [7] and HOF [8] features in an
8 � 8 grid of non-overlapping cells covering a person’s bounding
box and concatenate them to represent the appearance and motion
of the person. We measure the similarity between two appearance
representations by calculating Dð�; �Þ, the normalized Euclidean dis-
tance between the features of corresponding cells in the grid
(Fig. 14). Dð�; �Þ is therefore a vector with its ith element being the
normalized Euclidean distance of HOG and HOF features at
the corresponding locations. 1 is an indicator function selecting
the parameters associated with exemplar ei.



Fig. 14. 8 � 8 grid of HOG and HOF dense sampling and the visualization of Dð�; �Þ
computation between two representations.
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6.1.2.2. Activity-keypose link. bT
i U1ðy; eiÞmeasures the compatibility

between exemplar ei and activity y; the higher it is, the stronger
the exemplar ei is associated with activity y. It is formulated as:

bT
i U1ðy; eiÞ ¼

X
a2Y

XjEj
j¼1

biaj1fy¼ag1fei¼jth element of Eg; ð10Þ

where Y is the finite set of activities we want to recognize. The
activity key-pose term bi is indexed to capture variations of com-
patibility between an exemplar and an activity over time; a particu-
lar ei may be better associated with the beginning of y than the
ending of it. It also allows our model to account for the varied orders
a key-pose can take in different activities.

6.1.2.3. Direct root model. cTU2ðC; y; ti; siÞ directly measures the
compatibility between the activity and the image evidence at time
ti and location si:

cTU2ðC; y; ti; siÞ ¼
X
a2Y

cT
a/ðC; ti; siÞ1fy¼ag: ð11Þ

In our overall model formulation in Eq. (7), Ws ¼ ½a; bs; c� and
Wo ¼ ½a; bo; c� explicitly model for subject and object roles. Note
that a and c are assumed to be identical in both roles.

Function Q evaluates the spatial structure between people par-
ticipating in the interaction by assessing the compatibility
between activity y and the distance of the ith key-pose of one track
from the other. It is calculated as:

Q Wd
ðC1; C2; y;H1;H2Þ ¼

XK

i¼1

lT
i h C2; y; t1

i ; s
1
i

� �
þ
XK

i¼1

lT
i h C1; y; t2

i ; s
2
i

� �
; ð12Þ

where Wd ¼ ½l1;l2; . . . ;lK � and lT
i h Cb; y; t j

i ; s
j
i

� �
isX

a2Y
lT

iabin l Cb; t j
i

� �
� s j

i

��� �� ���
2
Þ1fy¼ag: ð13Þ

b – j and l Cb; t j
i

� �
is the location of the person enclosed in track Cb

at time t j
i . The distance is computed as the center-to-center
Euclidean distance, d, of bounding boxes (in pixels) and is dis-
cretized as binðdÞ ¼ d d

30e.
We adjust the model parameters ½Ws;Wo;Wd� such that the

more representative a combination of values for latent variables
is, the higher the score it is assigned. With this scoring scheme,
the key-pose representation of an interaction is:

ðH1�;H2�Þ ¼ arg max
ðH1 ;H2Þ2H1�H2

f Ws ;Wo ;Wd
ðC1;C2; y;H1;H2Þ; ð14Þ

where H1 �H2 is the space of all possible combinations of key-
poses. In the next sections we describe learning and inference pro-
cedures for adjusting model parameters and deploying them to

obtain ðH1�;H2�Þ.

6.2. Learning

We adjust model parameters in a latent structural SVM frame-

work for N pairs of person tracks ðC1
1;C

2
1Þ; ðC

1
2;C

2
2Þ; . . . ; ðC1

N;C
2
NÞ

n o
labeled y1; y2; . . . ; yNf g with yi’s in Y, a discrete set of interaction
categories. We formulate the learning criteria as:

min
Ws ;Wo ;Wd ;ni

k
2
ðWT

s Ws þWT
o Wo þWT

dWdÞ þ
XN

i¼1

ni;

s:t: 8i f Ws ;Wo ;Wd
ðC1

i ;C
2
i ; yi;H

1;H2Þ
� f Ws ;Wo ;Wd

ðC1
i ;C

2
i ; y;H

1;H2Þ > Dðyi; yÞ � ni; ð15Þ

where Dðyi; yÞ is 0–1 loss. The constraint in Eq. (15) ensures that the
correct label for a training sample is scored higher than any
incorrectly hypothesized label. The optimization problem above is
non-convex and is solved using the non-convex extension of the cut-
ting-plane algorithm provided in NRBM optimization package [10].
We also heuristically initialize model parameters: we divide each
track into K non-overlapping temporal segments and match the
frames in each segment to its nearest exemplar. biyj for the ith seg-
ment is set to the frequency of the jth exemplar in that segment for
class label y.

6.3. Inference

For tracks C1 and C2 of two people and model parameters
ðWs;Wo;WdÞ, we are looking for a combination of latent variables

ðH1�;H2�Þ among all possible ðH1;H2Þ that maximizes
f Ws ;Wo ;Wd

ðC1;C2; y;H1;H2Þ for each activity label y. Label with the
maximum f Ws ;Wo ;Wd

indicates the category of the interaction con-

tained in C1 and C2. Note that maximization can be decomposed
into two terms each corresponding to one sequence as the interac-
tion distance function Q in Eq. (12) is decomposable into two
independent terms each measuring distance of key-poses in one
sequence from the other track:

max
ðH1 ;H2Þ2H1�H2

f Ws ;Wo ;Wd
ðC1;C2; y;H1;H2Þ

¼ max
ðH1Þ2H1

PWðr1
1Þ
ðC1; y;H1Þ þ

XK

i¼1

lT
i h C2; y; t1

i ; s
1
i

� �( )

þ max
ðH2Þ2H2

PWðr2
1Þ
ðC2; y;H2Þ þ

XK

i¼1

lT
i h C1; y; t2

i ; s
2
i

� �( )
: ð16Þ

We can rewrite the maximization for a track C as:

max
H

XK

i¼1

Ati
i s:t: ti < tiþ1 8i ¼ 1;2; . . . ;K � 1; ð17Þ

where for each hi in an H; ri 2 subject; objectf g;1 6 ti 6 L (L is the
track length), si varies in a neighborhood around the tith frame of



Table 3
Classification performance of our model on the UT-Interaction benchmark and
comparisons with other models. Set 1 and Set 2 refer to parking lot and lawn scenes
respectively. We progressively consider more structural information, moving from
the first baseline (global BoW + SVM) to our full model that incorporates spatial and
temporal structure as well as the subject-object role of actors. The best reported
performance of other papers are included in the table.

Model Set 1 (%) Set 2 (%) Avg. (%)

Key-pose model and its structural elements
Global BoW + SVM 68.6 70.0 69.3
Temporal ordering only 83.3 86.7 85.0
Temporal + role 86.7 88.3 87.5
Spatial + temporal + role 93.3 90.0 91.7

Other models in the literature
Ryoo [37] 85 – –
Yu et al. [52] – – 83
Yao et al. [51] 88 80 84
Zhang et al. [53] 95 90 92
Kong et al. [22] 88.3 – –
Raptis and Sigal [35] 93.3 – –
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the track, and ei 2 E. Ati
i is defined as:

Ati
i ¼max

ri ;si ;ei

aTU0ðC; ti; si; eiÞ þ bT
i U1ðy; eiÞ þ cTU2ðC; y; ti; siÞ

�
þlT

i hðC
b; y; ti; siÞ

o
; ð18Þ

Cb is the other track involved in the interaction. b is bs if ri’s take the
subject role and is bo otherwise.

The chronological ordering constraint on key-pose timings
allows us to formulate inference as a dynamic programming prob-
lem that can be solved efficiently. We define Fðm; tÞ as the maxi-
mum value of max

Pm
i¼1Ati

i for ti < tiþ1 2 1;2; . . . ; tf g 8i
¼ 1;2; . . . ;m� 1. The following relations specify how Fðm; tÞ can
be computed recursively:

Fð1; tÞ ¼max A1
1;A

2
1; . . . ;At

1

n o
; ð19Þ

Fðm;mÞ ¼ Fðm� 1;m� 1Þ þ Am
m; ð20Þ

Fðm; tÞ ¼max Fðm� 1; t � 1Þ þ At
m; Fðm; t � 1Þ

� �
;m < t ð21Þ

FðK; LÞ gives the solution to each term in Eq. (16). The optimal key-
poses for each track can then be retrieved by backtracking. The
order of growth for this process is OðKLÞ, again linear in track length
L for fixed K.

7. Evaluation of key-pose model

We evaluate the key-pose model for interaction classification
on the UT-Interaction [39] benchmark. We first describe the data
and our training-test setup as well as the preprocessing steps for
obtaining tentative tracks of people and the set of their discrim-
inative poses. We subsequently specify the key-pose model
parameters and present the quantitative and qualitative results
of interaction recognition based on key-pose representations.

7.1. UT-Interaction dataset

The dataset portrays two people interacting with each other in
two scenes: a parking lot (Set 1) and a lawn (Set 2). There are 10
videos (720 � 480, 30 fps) in each scene with average duration of
one minute. Each video provides an average of 8 sample interac-
tions that are continuously performed by actors and contains at
least a sample of each interaction category: shake-hands, point,
hug, push, kick, and punch. While there is some camera jitter
and pedestrians walking by in some of the videos, the scenes are
otherwise static and clear. People’s appearance varies across videos
but camera viewpoint and the human height in pixels is stable
(�200). Ground truth annotations provide time intervals and
bounding boxes for interactions that give the 120 cropped video
clips for the classification task. We augment these annotations
for the pointing interaction to also account for the person being
pointed to. In our training-test setup, we follow the 10-fold
leave-one-out cross validation scheme of [39] and report the aver-
age performance.

7.2. Preprocessing

We should provide our model with initial tracks of people and a
set of exemplar poses, E, they take while interacting with each
other. Below, we detail the steps to obtain this information:

7.2.1. Person tracks
We use Dalal and Triggs [7]’s human detector on the first frame

of every video clip and pick the two out of the three top scoring
detections that are closest horizontally. We initialize Ross et al.
[36]’s tracker to get the person tracks that will be later input to
our model. We construct tracks at two different scales to accom-
modate the camera zoom in videos of Set 1.

7.2.2. Exemplar set
We train a multi-class linear SVM classifier based on HOG and

HOF features to score how discriminative frames of annotated
tracks are of the interactions they each belong to. We then cluster
the highest scored bounding boxes to get the discriminative exem-
plars for each interaction category separately. Note that the initial
classification step ensures that our K-Means clustering does not
simply favor the most common as opposed to the most discrim-
inative poses when constructing clusters. This heuristic procedure
is efficient and effective, while it achieves what more sophisticated
clustering algorithms (e.g. [26]) do in our experiments. We use [13]
to train the pose classifier and [12] to perform K-Means clustering
with 20 clusters and Dð�; �Þ (see 6.1.2) as the distance measure.
Since the cluster centroids are averaged virtual poses and do not
exist in the data, we use the samples from training set that are
nearest to the cluster centers as the final set of exemplars.

7.3. Experiments

We compare our key-pose model against a global BoW + SVM
model that does not account for any structure. We also construct
two other baselines to examine the importance of structural infor-
mation, namely the relative spatial movements and the differentia-
tion of subject-object role in the interaction: (1) a model that
includes neither the distance term, Q, nor the latent variable ‘‘role’’
(i.e. bs ¼ bo) and (2) a model where only the distance term is
ignored.

The key-pose model in the following experiments identifies a
fixed number of key-poses (K ¼ 5) in tracks obtained from video
clips. The ðX;YÞ location, s, of a key-pose varies in the vicinity of
the input track ðXtr ;YtrÞ in a small grid, i.e.
X 2 Xtr � dX ;Xtr ;Xtr þ dXf g and Y 2 Ytr � dY ;Ytr ;Ytr þ dYf g. In our
experiments we set dX and dY to 20 and 15 pixels respectively.

The global BoW + SVM model is a ‘‘bag of poses’’ approach – we
use the exemplar set (see 7.2) as pose prototypes. The frequency of
the occurrence of these prototypes over a video sequence is com-
puted and stored in a histogram. This bag of words-style approach
is akin to that used in Wang and Mori [46], capturing the frequen-
cies of human pose prototypes across a video sequence. The subse-
quent models build additional spatio-temporal structure that
enhance classification accuracy.

Our model achieves 91.7% average accuracy for the classifica-
tion task, a 22.4%-point improvement over the global model
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Fig. 15. Confusion matrices of classification performance on the UT-Interaction dataset. Rows are associated with ground truth, while columns represent predictions.
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(Table 3). Accounting for the temporal ordering of discriminative
poses alone achieves 85.5% accuracy and is improved by 	3% with
the addition of the role variable. By additionally modeling the
relative distance in our full model, we obtain the highest accuracy.
Confusion matrices in Fig. 15 provide more details regarding the
performance of our model for different interactions. As shown in
the figure, there is some confusion between ‘‘push’’ and ‘‘punch.’’
It is not unexpected though; the two activities are similar in both
appearance and relative movements of the people involved.

Varying the number of key-poses K (Table 4) suggests that very
few key-poses (i.e. K ¼ 1 or 2) fail to capture the temporal
Table 4
Classification performance of our model on the UT-Interaction benchmark for varied
number of key-poses (K). Very few key-poses fail to capture the temporal dynamics of
interactions. Larger values, such as K ¼ 5, are effective for the UT-interaction dataset.
Very large numbers, e.g. K ¼ 10, do not lead to any improvements. The bold values
denote the best results in each column.

#key-poses (K) Set 1 (%) Set 2 (%) Avg. (%)

K ¼ 1 89.9 86.7 88.3
K ¼ 2 83.5 86.7 85.1
K ¼ 5 93.3 90.0 91.7
K ¼ 10 88.0 90.0 89.0

Fig. 16. The key-pose series our model produces for a 69-frame video clip. At the top, we
are enclosed in a red box. The number under each frame is the frame number. The appear
depicts the learned model weights for matching to each exemplar. As the heat-maps sh
that covers the person and are largely concentrated on the extended hands for pushing.
extending hands and making contact with the other person.
dynamics of interactions. Moreover, performance is relatively
unchanged for very large K’s (e.g. K ¼ 10).

Overall, our method is competitive with the state of the art
methods. Further, it does not require additional labeling effort –
it only needs a per sequence interaction label. The key-poses and
their spatio-temporal locations are discovered by the model. The
approach seems robust to intra-class variations and inter-person
occlusions, likely due to the proposed key-pose representation.

Figs. 16–18 illustrate how our model works by visualizing
exemplar matching, activity-key pose weights, and the distance
profile of key-poses over time. We observe that the key-pose
model successfully localizes discriminative frames of a track
(enclosed by a red box in Fig. 16) and associates them with similar
exemplars. Another interesting observation is that the key-poses
are not uniformly spaced in time. In fact, they are denser at the
peak moments, for example the duration when the attacker’s
hands are extended and the contact happens in a pushing
interaction.

Moreover, our model handles pose variations using the exem-
plar representation. The three top scored exemplars depicted for
each key-pose in Fig. 17 vary considerably in appearance.

We also examine the contribution of the spatial distance con-
straint when a key-pose is localized. As Fig. 18 reveals, the spatial
relation profile differs across interactions. As expected, the model
have visualized the exemplars matched to each frame at the bottom. The key-poses
ance of exemplars matches the image evidence. The heat-map next to each exemplar
ow, higher weights (darker red cells) are learned for the discriminative appearance
The key-poses are more densely localized at discriminative moments such as when



Fig. 17. The heat-map and top scored exemplars for a key-pose in hand-shake, punch, and push interactions. Each heat-map represents 20 exemplars associated with the
activity vertically, and the 5 key-poses in the key-pose series horizontally. Therefore, each cell on the heat-map scores how well a particular exemplar matches the activity at
the time of the key-pose; the higher the score, the redder the cell. The top scored exemplars are varied in appearance.

Fig. 18. Visualization of discretized spatial distances of key-poses for hug, point, and push interactions with discrete distance, key-poses, and the associated weights on three
axes. The higher and darker the bar, the larger its weight. Not surprisingly, smaller distances are preferred for hug while the opposite is true for point. The preferred distance
during pushing changes from near (first key-pose) to far (last key-pose).

Y.S. Sefidgar et al. / Computer Vision and Image Understanding 135 (2015) 16–30 29
learns shorter distances for hugging and longer ones for pointing.
Additionally, the profile for pushing correctly captures the varia-
tions in distance throughout the interaction; the model associates
shorter distances with the starting key-poses and longer distances
with the ones at the end.
8. Conclusion

In this paper we developed structured models for human inter-
action detection and recognition in video sequences. These models
select a set of key-components, discriminative moments in a video
sequence that are important evidence for the presence of a particu-
lar interaction. We demonstrated the effectiveness of this model
for detecting human–vehicle interactions in long surveillance
videos. On the VIRAT dataset we showed that appearance features
combined with relative distance and motion features can be effec-
tive for detection, and accuracy is enhanced by the selection of an
important key-component. Further experiments on the UT-
Interaction dataset of human–human interactions verified that
incorporating temporal and spatial structure in the form of a series
of key-components results in state-of-the-art classification perfor-
mance, and improvements over unstructured baselines.

We demonstrated highly accurate interaction detection when
good quality human detection and tracking are available, from
ground truth data on VIRAT and automatic tracks on UT-
Interaction. Automatic tracks on VIRAT still resulted in effective
pruning of potential interactions. Directions for future work
include further experimentation with other trackers and refine-
ments to the model to choose the appropriate number of key-poses
for each sequence automatically.
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